首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase-8 is a cysteine protease activated by membrane-bound receptors at the cytosolic face of the cell membrane, initiating the extrinsic pathway of apoptosis. Caspase-8 activation relies on recruitment of inactive monomeric zymogens to activated receptor complexes, where they produce a fully active enzyme composed of two catalytic domains. Although in vitro studies using drug-mediated affinity systems or kosmotropic salts to drive dimerization have indicated that uncleaved caspase-8 can be readily activated by dimerization alone, in vivo results using mouse models have reached the opposite conclusion. Furthermore, in addition to interdomain autoprocessing, caspase-8 can be cleaved by activated executioner caspases, and reports of whether this cleavage event can lead to activation of caspase-8 have been conflicting. Here, we address these questions by carrying out studies of the activation characteristics of caspase-8 mutants bearing prohibitive mutations at the interdomain cleavage sites both in vitro and in cell lines lacking endogenous caspase-8, and we find that elimination of these cleavage sites precludes caspase-8 activation by prodomain-driven dimerization. We then further explore the consequences of interdomain cleavage of caspase-8 by adapting the tobacco etch virus protease to create a system in which both the cleavage and the dimerization of caspase-8 can be independently controlled in living cells. We find that unlike the executioner caspases, which are readily activated by interdomain cleavage alone, neither dimerization nor cleavage of caspase-8 alone is sufficient to activate caspase-8 or induce apoptosis and that only the coordinated dimerization and cleavage of the zymogen produce efficient activation in vitro and apoptosis in cellular systems.  相似文献   

2.
Caspases coordinate the internal demolition of the cell that is seen during apoptosis. Proteolytic processing of caspases is observed during apoptosis, and this correlates with conversion of inactive caspase proenzymes into their active two-chain forms. However, recent studies have suggested that caspase-8 is activated through dimerization and that interchain proteolysis is not sufficient for activation of this caspase. This proposal casts doubt upon whether caspase-8 is productively activated by granzyme B during granule-dependent cytotoxic T lymphocyte or natural killer cell-mediated killing, for example. Contrary to the dimerization model, we show that direct proteolysis of caspase-8 by the cytotoxic T lymphocyte protease granzyme B, or by caspase-6, produces an active enzyme that displays robust proteolytic activity toward synthetic as well as natural caspase-8 substrates. These data suggest that enforced dimerization of caspase-8 zymogens by scaffold proteins such as Fas-associated protein with death domain (FADD), although important in certain contexts, is not a prerequisite for activation of this protease.  相似文献   

3.
Caspase‐8 is a cysteine directed aspartate‐specific protease that is activated at the cytosolic face of the cell membrane upon receptor ligation. A key step in the activation of caspase‐8 depends on adaptor‐induced dimerization of procaspase‐8 monomers. Dimerization is followed by limited autoproteolysis within the intersubunit linker (IL), which separates the large and small subunits of the catalytic domain. Although cleavage of the IL stabilizes the dimer, the uncleaved procaspase‐8 dimer is sufficiently active to initiate apoptosis, so dimerization of the zymogen is an important mechanism to control apoptosis. In contrast, the effector caspase‐3 is a stable dimer under physiological conditions but exhibits little enzymatic activity. The catalytic domains of caspases are structurally similar, but it is not known why procaspase‐8 is a monomer while procaspase‐3 is a dimer. To define the role of the dimer interface in assembly and activation of procaspase‐8, we generated mutants that mimic the dimer interface of effector caspases. We show that procaspase‐8 with a mutated dimer interface more readily forms dimers. Time course studies of refolding also show that the mutations accelerate dimerization. Transfection of HEK293A cells with the procaspase‐8 variants, however, did not result in a significant increase in apoptosis, indicating that other factors are required in vivo. Overall, we show that redesigning the interface of procaspase‐8 to remove negative design elements results in increased dimerization and activity in vitro, but increased dimerization, by itself, is not sufficient for robust activation of apoptosis.  相似文献   

4.
Proteases of the caspase family are thought to be activated by proteolytic processing of their inactive zymogens. However, although proteolytic cleavage is sufficient for executioner caspases, a different mechanism has been recently proposed for initiator caspases, such as caspase-8, which are believed to be activated by proximity-induced dimerization. According to this model, dimerization rather than proteolytic processing is considered as the critical event for caspase-8 activation. Such a mechanism would suggest that in the absence of a dimerization platform such as the death-inducing signaling complex, caspase-8 proteolytic cleavage would result in an inactive enzyme. As several studies have described caspase-8 cleavage during mitochondrial apoptosis, we now investigated whether caspase-8 becomes indeed catalytically active in this pathway. Using an in vivo affinity labeling approach, we demonstrate that caspase-8 is activated in etoposide-treated cells in vivo in the absence of the receptor-induced death-inducing signaling complex formation. Furthermore, we show that both caspase-3 and -6 are required for the efficient activation of caspase-8. Our data therefore indicate that interchain cleavage of caspase-8 in the mitochondrial pathway is sufficient to produce an active enzyme even in the absence of receptor-driven procaspase-8 dimerization.  相似文献   

5.
Caspase 8 is an initiator caspase that is activated by death receptors to initiate the extrinsic pathway of apoptosis. Caspase 8 activation involves dimerization and subsequent interdomain autoprocessing of caspase 8 zymogens, and recently published work has established that elimination of the autoprocessing site of caspase 8 abrogates its pro-apoptotic function while leaving its proliferative function intact. The observation that the developmental abnormalities of caspase 8-deficient mice are shared by mice lacking the dimerization adapter FADD (Fas-associated death domain) or the caspase paralogue FLIP(L) [FLICE (FADD-like interleukin 1β-converting enzyme)-inhibitory protein, long form] has led to the hypothesis that FADD-dependent formation of heterodimers between caspase 8 and FLIP(L) could mediate the developmental role of caspase 8. In the present study, using an inducible dimerization system we demonstrate that cleavage of the catalytic domain of caspase 8 is crucial for its activity in the context of activation by homodimerization. However, we find that use of FLIP(L) as a partner for caspase 8 in dimerization-induced activation rescues the requirement for intersubunit linker proteolysis in both protomers. Moreover, before processing, caspase 8 in complex with FLIP(L) does not generate a fully active enzyme, but an attenuated species able to process only selected natural substrates. Based on these results we propose a mechanism of caspase 8 activation by dimerization in the presence of FLIP(L), as well as a mechanism of caspase 8 functional divergence in apoptotic and non-apoptotic pathways.  相似文献   

6.
A unified model for apical caspase activation   总被引:14,自引:0,他引:14  
Apoptosis is orchestrated by the concerted action of caspases, activated in a minimal two-step proteolytic cascade. Existing data suggests that apical caspases are activated by adaptor-mediated clustering of inactive zymogens. However, the mechanism by which apical caspases achieve catalytic competence in their recruitment/activation complexes remains unresolved. We explain that proximity-induced activation of apical caspases is attributable to dimerization. Internal proteolysis does not activate these apical caspases but is a secondary event resulting in partial stabilization of activated dimers. Activation of caspases-8 and -9 occurs by dimerization that is fully recapitulated in vitro by kosmotropes, salts with the ability to stabilize the structure of proteins. Further, single amino acid substitutions at the dimer interface abrogate the activity of caspases-8 and -9 introduced into recipient mammalian cells. We propose a unified caspase activation hypothesis whereby apical caspases are activated by dimerization of monomeric zymogens.  相似文献   

7.
The cysteine protease, caspase-8, undergoes dimerization, processing, and activation following stimulation of cells with death ligands such as TRAIL, and mediates TRAIL induction of the extrinsic apoptosis pathway. In addition, caspase-8 mediates TRAIL-induced activation of NF-κB and upregulation of immunosuppressive chemokines/cytokines, via a mechanism independent of caspase-8 catalytic activity. The gene encoding procaspase-8 is mutated in 10% of human head and neck squamous cell carcinomas (HNSCCs). Despite a paucity of experimental evidence, HNSCC-associated caspase-8 mutations are commonly assumed to be loss of function. To investigate their functional properties and phenotypic effects, 18 HNSCC-associated caspase-8 mutants were expressed in doxycycline-inducible fashion in cell line models wherein the endogenous wild-type caspase-8 was deleted. We observed that 5/8 mutants in the amino-terminal prodomain, but 0/10 mutants in the carboxyl-terminal catalytic region, retained an ability to mediate TRAIL-induced apoptosis. Caspase-8 proteins with mutations in the prodomain were defective in dimerization, whereas all ten of the catalytic region mutants efficiently dimerized, revealing an inverse relationship between dimerization and apoptosis induction for the mutant proteins. Roughly half (3/8) of the prodomain mutants and 9/10 of the catalytic region mutants retained the ability to mediate TRAIL induction of immunosuppressive CXCL1, IL-6, or IL-8. Doxycycline-induced expression of wild-type caspase-8 or a representative mutant led to an increased percentage of T and NKT cells in syngeneic HNSCC xenograft tumors. These findings demonstrate that HNSCC-associated caspase-8 mutants retain properties that may influence TRAIL-mediated apoptosis and cytokine induction, as well as the composition of the tumor microenvironment.Subject terms: Medical research, Preclinical research  相似文献   

8.
Caspase-14 is a developmentally regulated and tissue restricted member of the caspase family present in mammals. It is mainly found in epidermal keratinocytes and has been hypothesized to be involved in a tissue-specific form of cell senescence, leading to the differentiation of keratinocytes that form the cornified cell layer. However, the substrate specificity, activation mechanism, and function of this caspase have yet to be revealed. We report that caspase-14, in contrast to other caspases, is not produced in active form following expression in Escherichia coli but can be activated by high concentrations of kosmotropic salts. Moreover, proteolytic cleavage is also required since the kosmotropic salts were only effective on the cleaved enzyme. We propose that caspase-14 requires proteolytic cleavage within the catalytic domain, followed by dimerization and ordering of mobile active site loops, to generate a competent enzyme. In the presence of kosmotropic salt, we were able to determine the substrate specificities of mouse and human caspase-14. Surprisingly, the substrate preferences for the human and mouse enzyme are dissimilar. The results obtained with human caspase-14 classify this enzyme as a cytokine activator, but the mouse enzyme shows preferences similar to apical apoptotic caspases.  相似文献   

9.
The apical protease of the human intrinsic apoptotic pathway, caspase-9, is activated in a polymeric activation platform known as the apoptosome. The mechanism has been debated, and two contrasting hypotheses have been suggested. One of these postulates an allosteric activation of monomeric caspase-9; the other postulates a dimer-driven assembly at the surface of the apoptosome--the "induced proximity" model. We show that both Hofmeister salts and a reconstituted mini-apoptosome activate caspase-9 by a second-order process, compatible with a conserved dimer-driven process. Significantly, replacement of the recruitment domain of the apical caspase of the extrinsic apoptotic pathway, caspase-8, by that of caspase-9 allows activation of this hybrid caspase by the apoptosome. Consequently, apical caspases can be activated simply by directing their zymogens to the apoptosome, ruling out the requirement for allosteric activation and supporting an induced proximity dimerization model for apical caspase activation in vivo.  相似文献   

10.
Caspase-7 is an obligate dimer of catalytic domains, with generation of activity requiring limited proteolysis within a region that separates the large and small chains of each domain. Using hybrid dimers we distinguish the relative contribution of each domain to catalysis by the whole molecule. We demonstrate that the zymogen arises from direct dimerization and not domain swapping. In contrast to previous conclusions, we show that only one of the catalytic domains must be proteolyzed to enable activation. The processed domain of this singly cleaved zymogen has the same catalytic activity as a domain of fully active caspase-7. A transient intermediate of singly cleaved dimeric caspase-7 can be found in a cell-free model of apoptosis induction. However, we see no evidence for an analogous intermediate of the related executioner caspase-3. Our study demonstrates the efficiency by which the executioner caspases are activated in vivo.  相似文献   

11.
A novel linker system based on 3-aminoxypropionate was designed and evaluated for drug release using proteolysis as an activation trigger followed by intramolecular cyclization. The hydroxylamine moiety present in the linker system enabled faster release of the parent drug from the linker–drug conjugate at lower pH as compared to an aliphatic amine moiety. Introduction of two methyl groups strategically at the α position to the carboxylate in the linker further improved the rate of cyclization by nearly 2-fold. The 3-aminoxypropionate linker was successfully applied to a model prodrug for protease activation using α-chymotrypsin as the activating enzyme; the activation of the model prodrug bearing the 3-aminoxypropionate linker was 136 times faster than the corresponding model prodrug bearing an amine linker.  相似文献   

12.
Domain structure and phosphorylation of protein kinase C   总被引:18,自引:0,他引:18  
The phospholipid- and calcium-dependent protein kinase C has been shown to autophosphorylate on both the catalytic and the regulatory domains. The autophosphorylation displays zero-order kinetics, indicating that it is an intramolecular event. Autophosphorylation increases the activity of protein kinase C by decreasing the Km for the substrate H1 histone. The catalytic fragment obtained by limited proteolysis can no longer autophosphorylate and has a reduced affinity for H1 histone, exhibiting a Km 5-fold higher than that of the intact enzyme. Monoclonal antibodies produced against the enzyme can distinguish between the catalytic fragment and the intact enzyme by inhibiting their activities in a specific manner. Evidence suggesting that dimerization of protein kinase C occurs upon activation is presented.  相似文献   

13.
The Hemophilus influenzae Hap adhesin is an autotransporter protein that undergoes an autoproteolytic cleavage event resulting in extracellular release of the adhesin domain (Hap(s)) from the membrane-associated translocator domain (Hap(beta)). Hap autoproteolysis is mediated by Ser(243) and occurs at LN1036-7 and to a lesser extent at more COOH-terminal alternate sites. In the present study, we sought to further define the mechanism of Hap autoproteolysis. Site-directed mutagenesis of residues His(98) and Asp(140) identified a catalytic triad conserved among a subfamily of autotransporters and reminiscent of the SA (chymotrypsin) clan of serine proteases. Amino-terminal amino acid sequencing of histidine-tagged Hap(beta) species and site-directed mutagenesis established that autoproteolysis occurs at LT1046-7, FA1077-8, and FS1067-8, revealing a consensus target sequence for cleavage that consists of ((Q/R)(A/S)X(L/F)) at the P4 through P1 positions. Examination of a recombinant strain co-expressing a Hap derivative lacking all cleavage sites (HapDelta1036-99) and a Hap derivative lacking proteolytic activity (HapS243A) demonstrated that autoproteolysis occurs by an intermolecular mechanism. Kinetic analysis of Hap autoproteolysis in bacteria expressing Hap under control of an inducible promoter demonstrated that autoproteolysis increases as the density of Hap precursor in the outer membrane increases, confirming intermolecular cleavage and suggesting a novel mechanism for regulation of bacterial adherence and microcolony formation.  相似文献   

14.
The amino acid sequence of ervatamin-C, a thermostable cysteine protease from a tropical plant, revealed an additional 24-amino-acid extension at its C-terminus (CT). The role of this extension peptide in zymogen activation, catalytic activity, folding and stability of the protease is reported. For this study, we expressed two recombinant forms of the protease in Escherichia coli, one retaining the CT-extension and the other with it truncated. The enzyme with the extension shows autocatalytic zymogen activation at a higher pH of 8.0, whereas deletion of the extension results in a more active form of the enzyme. This CT-extension was not found to be cleaved during autocatalysis or by limited proteolysis by different external proteases. Molecular modeling and simulation studies revealed that the CT-extension blocks some of the substrate-binding unprimed subsites including the specificity-determining subsite (S2) of the enzyme and thereby partially occludes accessibility of the substrates to the active site, which also corroborates the experimental observations. The CT-extension in the model structure shows tight packing with the catalytic domain of the enzyme, mediated by strong hydrophobic and H-bond interactions, thus restricting accessibility of its cleavage sites to the protease itself or to the external proteases. Kinetic stability analyses (T(50) and t(1/2) ) and refolding experiments show similar thermal stability and refolding efficiency for both forms. These data suggest that the CT-extension has an inhibitory role in the proteolytic activity of ervatamin-C but does not have a major role either in stabilizing the enzyme or in its folding mechanism.  相似文献   

15.
Activation of caspase-3 is a central event in apoptosis. We have developed a GFP-based FRET (fluorescence resonance energy transfer) probe that is highly sensitive to the activation of caspase-3 in intact living cells. This probe was constructed by fusing a CFP (cyan fluorescent protein) and a YFP (yellow fluorescent protein) with a specialized linker containing the caspase-3 cleavage sequence: DEVD. The linker design was optimized to produce a large FRET effect. Using purified protein, we observed a fivefold change in the fluorescence emission ratio when the probe was cleaved by caspase-3. To demonstrate the usefulness of this method, we introduced this FRET probe into HeLa cells by both transient and stable transfection. We observed that during UV-induced apoptosis, the activation of caspase-3 varied significantly between different cells; but once the caspase was activated, the enzyme within the cell became fully active within a few minutes. This technique will be highly useful for correlating the caspase-3 activation with other apoptotic events and for rapid-screening of potential drugs that may target the apoptotic process.  相似文献   

16.
Catalytically active biotin protein ligase from Saccharomyces cerevisiae (EC 6.3.4.15) was overexpressed in Escherichia coli and purified to near homogeneity in three steps. Kinetic analysis demonstrated that the substrates ATP, biotin, and the biotin-accepting protein bind in an ordered manner in the reaction mechanism. Treatment with any of three proteases of differing specificity in vitro revealed that the sequence between residues 240 and 260 was extremely sensitive to proteolysis, suggesting that it forms an exposed linker between an N-terminal 27-kDa domain and the C-terminal 50-kDa domain containing the active site. The protease susceptibility of this linker region was considerably reduced in the presence of ATP and biotin. A second protease-sensitive sequence, located in the presumptive catalytic site, was protected against digestion by the substrates. Expression of N-terminally truncated variants of the yeast enzyme failed to complement E. coli strains defective in biotin protein ligase activity. In vitro assays performed with purified N-terminally truncated enzyme revealed that removal of the N-terminal domain reduced BPL activity by greater than 3500-fold. Our data indicate that both the N-terminal domain and the C-terminal domain containing the active site are necessary for complete catalytic function.  相似文献   

17.
Glycosylasparaginase (GA) is an amidase and belongs to a novel family of N-terminal nucleophile hydrolases that use a similar autoproteolytic processing mechanism to generate a mature/active enzyme from a single chain protein precursor. From bacteria to eukaryotes, GAs are conserved in primary sequences, tertiary structures, and activation of amidase activity by intramolecular autoproteolysis. An evolutionarily conserved His-Asp-Thr sequence is cleaved to generate a newly exposed N-terminal threonine, which plays a central role in both autoproteolysis and in its amidase activity. We have recently determined the crystal structure of the bacterial GA precursor at 1.9-A resolution, which reveals a highly distorted and energetically unfavorable conformation at the scissile peptide bond. A mechanism of autoproteolysis via an N-O acyl shift was proposed to relieve these conformational strains. However, it is not understood how the polypeptide chain distortion was generated and preserved during the folding of GA to trigger autoproteolysis. An obstacle to our understanding of GA autoproteolysis is the uncertainty concerning its quaternary structure in solution. Here we have revisited this question and show that GA forms dimers in solution. Mutants with alterations at the dimer interface cannot form dimers and are impaired in the autoproteolytic activation. This suggests that dimerization of GA plays an essential role in autoproteolysis to activate the amidase activity. Comparison of the melting temperatures of GA dimers before and after autoproteolysis suggests two states of dimerization in the process of enzyme maturation. A two-step dimerization mechanism to trigger autoproteolysis is proposed to accommodate the data presented here as well as those in the literature.  相似文献   

18.
X-linked inhibitor of apoptosis protein (XIAP) inhibits apoptosis mainly through inhibition of caspase-9 and executioner caspases of -3 and -7. The inhibition of the former protease is implemented through the bacculoviral inhibitory repeat-3 (Bir3) domain, while the inhibition of the latter is accomplished by the interaction of the linker region located between the Bir1 and the Bir2 domains with their active sites. Both modes of inhibition are antagonized by SMAC, which is released from mitochondria during the initiation of the intrinsic apoptosis pathway. Although the mechanism of SMAC interference in Bir3 inhibition of caspase-9 is clearly established, the mechanism by which SMAC interferes with the inhibition of the executioner caspases by XIAP remains largely unknown. To address this issue, we performed a limited proteolysis of glutathione S-transferase (GST)-tagged XIAP-Bir2 by trypsin in the presence and in the absence of SMAC peptide. Under these conditions, the proteolysis of the linker region was diminished considerably. Furthermore, the rate of association of caspase-3 and -7 with XIAP in the presence of the SMAC peptide was reduced drastically, suggesting that SMAC peptide restricts the exposure of the linker region. A limited proteolysis of caspase-7 in the presence of GST-Bir2 and GST-NBir3 (the Bir3 domain of human NAIP) as negative controls was also performed. Matrix-assisted laser desorption/ionization time-of-flight analysis of the fragments revealed the identity of protected sites, suggesting that the Bir2 domain makes numerous contacts with the large subunit of caspase-7. These, combined with the results from Far-Western experiments, strongly suggest that the groove for the inhibitor(s)-of-apoptosis-protein-binding motif on the Bir2 favors binding to the N-terminus of the large subunit rather than to the small subunit of caspase-7. Our results further show that the active-site pocket of caspase-7 is first occupied by the linker region, followed by the interaction of the N-terminus of the enzyme with the SMAC-binding site of the Bir2 domain.  相似文献   

19.
The biochemical mechanism of caspase-2 activation   总被引:9,自引:0,他引:9  
A unified model for initiator caspase activation has previously been proposed based on the biochemical analysis of caspase-8 and -9. Caspase-2 is structurally related to caspase-9, but its mechanism of activation is not known. Using an uncleavable mutant of caspase-2, we show that dimerization (and not processing) is the key event that drives initial procaspase-2 activation. Following dimerization, caspase-2 undergoes autocatalytic cleavage that promotes its stable dimerization and further enhances the catalytic activity of caspase-2. Although the caspase-2 zymogen does not require cleavage for the initial acquisition of activity, intersubunit cleavage is required to generate levels of activity required to induce cell death by overexpression. We also provide evidence that the reported disulfide bond linkage between two caspase-2 monomers is dispensable for caspase-2 dimerization. As caspase-2 does not require cleavage for its initial activation, our findings confirm caspase-2 to be a bona fide initiator caspase.  相似文献   

20.
The structural proteins of Sindbis virus are translated as a polyprotein precursor that is cleaved upon translation. The capsid protein is postulated to be a serine protease that releases itself from the N terminus of the nascent polyprotein by autoproteolysis. We have tested the importance in autoproteolysis of His-141, Asp-147, and Ser-215, previously postulated to form the catalytic triad of the protease, and of Asp-163. Several site-specific mutations were constructed at each of these positions, and the release of the capsid protein during translation in a cell-free system was examined. Because proteolysis occurs in cis during translation, the kinetics of release cannot be determined in this system, but the extent of proteolysis can be ascertained. Ser-215 appears to be the catalytic serine of the proteinase. Cys or Thr could substitute inefficiently for Ser-215, but substitution with Ala or Ile led to complete loss of activity. His-141 was also important for proteolysis. Substitution with Ala or Pro led to total loss of activity. Surprisingly, substitution with Arg resulted in complete proteolysis in vitro. Changes at the two Asp residues resulted in complete proteolysis of the substrate in vitro. All mutations that resulted in at least partial cleavage in vitro were incorporated into a full-length clone of Sindbis virus and an attempt was made to recover mutant virus. All changes tested were lethal for the virus except Asp-163 to Asn. Thus, production of infectious virus is either a more sensitive measure of the catalytic rate than the extent of in vitro cleavage, or these residues have necessary functions in addition to their possible role in proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号