首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress leads to increased risk for osteoarthritis (OA) but the precise mechanism remains unclear. We undertook this study to clarify the impact of oxidative stress on the progression of OA from the viewpoint of oxygen free radical induced genomic instability, including telomere instability and resulting replicative senescence and dysfunction in human chondrocytes. Human chondrocytes and articular cartilage explants were isolated from knee joints of patients undergoing arthroplastic knee surgery for OA. Oxidative damage and antioxidative capacity in OA cartilage were investigated in donor-matched pairs of intact and degenerated regions of tissue isolated from the same cartilage explants. The results were histologically confirmed by immunohistochemistry for nitrotyrosine, which is considered to be a maker of oxidative damage. Under treatment with reactive oxygen species (ROS; 0.1 μmol/l H2O2) or an antioxidative agent (ascorbic acid: 100.0 μmol/l), cellular replicative potential, telomere instability and production of glycosaminoglycan (GAG) were assessed in cultured chondrocytes. In tissue cultures of articular cartilage explants, the presence of oxidative damage, chondrocyte telomere length and loss of GAG to the medium were analyzed in the presence or absence of ROS or ascorbic acid. Lower antioxidative capacity and stronger staining of nitrotyrosine were observed in the degenerating regions of OA cartilages as compared with the intact regions from same explants. Immunostaining for nitrotyrosine correlated with the severity of histological changes to OA cartilage, suggesting a correlation between oxidative damage and articular cartilage degeneration. During continuous culture of chondrocytes, telomere length, replicative capacity and GAG production were decreased by treatment with ROS. In contrast, treatment with an antioxidative agent resulted in a tendency to elongate telomere length and replicative lifespan in cultured chondrocytes. In tissue cultures of cartilage explants, nitrotyrosine staining, chondrocyte telomere length and GAG remaining in the cartilage tissue were lower in ROS-treated cartilages than in control groups, whereas the antioxidative agent treated group exhibited a tendency to maintain the chondrocyte telomere length and proteoglycan remaining in the cartilage explants, suggesting that oxidative stress induces chondrocyte telomere instability and catabolic changes in cartilage matrix structure and composition. Our findings clearly show that the presence of oxidative stress induces telomere genomic instability, replicative senescence and dysfunction of chondrocytes in OA cartilage, suggesting that oxidative stress, leading to chondrocyte senescence and cartilage ageing, might be responsible for the development of OA. New efforts to prevent the development and progression of OA may include strategies and interventions aimed at reducing oxidative damage in articular cartilage.  相似文献   

2.
A bovine cartilage explant system was used to evaluate the effects of injurious compression on chondrocyte apoptosis and matrix biochemical and biomechanical properties within intact cartilage. Disks of newborn bovine articular cartilage were compressed in vitro to various peak stress levels and chondrocyte apoptotic cell death, tissue biomechanical properties, tissue swelling, glycosaminoglycan loss, and nitrite levels were quantified. Chondrocyte apoptosis occurred at peak stresses as low as 4.5 MPa and increased with peak stress in a dose-dependent manner. This increase in apoptosis was maximal by 24 h after the termination of the loading protocol. At high peak stresses (>20 MPa), greater than 50% of cells apoptosed. When measured in uniaxial confined compression, the equilibrium and dynamic stiffness of explants decreased with the severity of injurious load, although this trend was not significant until 24-MPa peak stress. In contrast, the equilibrium and dynamic stiffness measured in radially unconfined compression decreased significantly after injurious stresses of 12 and 7 MPa, respectively. Together, these results suggested that injurious compression caused a degradation of the collagen fibril network in the 7- to 12-MPa range. Consistent with this hypothesis, injurious compression caused a dose-dependent increase in tissue swelling, significant by 13-MPa peak stress. Glycosaminoglycans were also released from the cartilage in a dose-dependent manner, significant by 6- to 13-MPa peak stress. Nitrite levels were significantly increased above controls at 20-MPa peak stress. Together, these data suggest that injurious compression can stimulate cell death as well as a range of biomechanical and biochemical alterations to the matrix and, possibly, chondrocyte nitric oxide expression. Interestingly, chondrocyte programmed cell death appears to take place at stresses lower than those required to stimulate cartilage matrix degradation and biomechanical changes. While chondrocyte apoptosis may therefore be one of the earliest responses to tissue injury, it is currently unclear whether this initial cellular response subsequently drives cartilage matrix degradation and changes in the biomechanical properties of the tissue.  相似文献   

3.
Morel V  Quinn TM 《Biorheology》2004,41(3-4):509-519
The short-term responses of articular cartilage to mechanical injury have important implications for prevention and treatment of degenerative disease. Cell and matrix responses were monitored for 11 days following injurious compression of cartilage in osteochondral explants. Injury was applied as a single ramp compression to 14 MPa peak stress at one of three strain rates: 7 x 10(-1), 7 x 10(-3) or 7 x 10(-5) s(-1). Responses were quantified in terms of the appearance of macroscopic matrix cracks, changes in cell viability, and changes in cartilage wet weights. Loading at the highest strain rate resulted in acute cell death near the superficial zone in association with cracks, followed over the 11 days after compression by a gradual increase in cell death and loss of demarcation between matrix zones containing viable versus nonviable cells. In contrast, loading at the lowest strain rate resulted in more severe, nearly full-depth cell death acutely, but with no apparent worsening over the 11 days following compression. Between days 4 and 11, all mechanically injured explants significantly increased in wet weight, suggesting loss of matrix mechanical integrity independent of compression strain rate. Results demonstrate that short-term responses of cartilage depend upon the biomechanical characteristics of injurious loading, and suggest multiple independent pathways of mechanically-induced cell death and matrix degradation. Modifications to an existing fiber-reinforced poroelastic finite element model were introduced and the model was used for data interpretation and identification of microphysical events involved in cell and matrix injury. The model performed reasonably well at the slower strain rates and exhibited some capacity for anticipating the formation of superficial cracks during injurious loading. However, several improvements appear to be necessary before such a model could reliably be used to draw upon in vitro experimental results for prediction of injurious loading situations in vivo.  相似文献   

4.

Introduction

AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and performed translational studies of AMPK pharmacologic activation.

Methods

We assessed activity (phosphorylation) of LKB1 and AMPKα in mouse knee OA cartilage, in aging mouse cartilage (6 to 24 months), and in chondrocytes after mechanical injury by dynamic compression, via immunohistochemistry or western blot. We knocked down LKB1 by siRNA transfection. Nitric oxide, matrix metalloproteinase (MMP)-3, and MMP-13 release were measured by Griess reaction and ELISA, respectively.

Results

Knockdown of LKB1 attenuated chondrocyte AMPK activity, and increased nitric oxide, MMP-3 and MMP-13 release (P <0.05) in response to IL-1β and TNFα. Both LKB1 and AMPK activity were decreased in mouse knee OA and aged knee cartilage, and in bovine chondrocytes after biomechanical injury. Pretreatment of bovine chondrocytes with AMPK activators AICAR and A-769662 inhibited both AMPKα dephosphorylation and catabolic responses after biomechanical injury.

Conclusion

LKB1 is required for chondrocyte AMPK activity, thereby inhibiting matrix catabolic responses to inflammatory cytokines. Concurrent loss of LKB1 and AMPK activity in articular chondrocytes is associated with OA, aging and biomechanical injury. Conversely, pharmacologic AMPK activation attenuates catabolic responses to biomechanical injury, suggesting a potentially novel approach to inhibit OA development and progression.  相似文献   

5.
Protein kinase B (Akt) and protein kinase Cα (PKCα) play important roles in the regulation of cell apoptosis. The aim of this study was to investigate the expression of Akt and PKCa in chondrocytes of human knee osteoarthritic (OA) cartilage, further evaluating their role in chondrocyte apoptosis during OA progression. Human knee OA cartilages were obtained from 38 patients undergoing knee arthroplasty, which is the medium-late stage of OA. Healthy knee cartilages were obtained from 11 amputees. The samples taken from the condyle of femur were collected routinely for morphological, immunohistochemical and Western blot detection, respectively. Light microscopy and laser-scanning confocal microscopy were used for morphological observation. The optical density with computer image analysis evaluated the intensity of immunohistochemical reaction of Akt and PKCα in OA cartilage. Western blot detected the protein expression levels. The results indicated that Akt and PKCa were involved in OA progression, along with the increase of cell apoptosis. In OA cartilage, Akt decreased (p < 0.05) and PKCα increased (p < 0.05). There was a negative correlation and interaction between Akt and PKCα (r = -0.8). These results demonstrated that both Akt and PKCα are related to increased chondrocyte apoptosis in human OA cartilage. The correlation between human OA progression, the role of Akt and PKCα, and chondrocyte apoptosis allows for new therapeutic strategies to be considered.  相似文献   

6.
The objective of this study was to describe the rate of change in knee cartilage volume over 4.5 years in subjects with symptomatic knee osteoarthritis (OA) and to determine factors associated with cartilage loss. One hundred and five subjects were eligible for this longitudinal study. Subjects' tibial cartilage volume was assessed by magnetic resonance imaging (MRI) at baseline, at 2 years and at 4.5 years. Of 105 subjects, 78 (74%) completed the study. The annual percentage losses of medial and lateral tibial cartilage over 4.5 years were 3.7 ± 4.7% (mean ± SD; 95% confidence interval 2.7 to 4.8%) and 4.4 ± 4.7% (mean ± SD; 95% confidence interval 3.4 to 5.5%), respectively. Cartilage volume in each individual seemed to track over the study period, relative to other study participants. After multivariate adjustment, annual medial tibial cartilage loss was predicted by lesser severity of baseline knee pain but was independent of age, body mass index and structural factors. No factors specified a priori were associated with lateral cartilage volume rates of change. Tibial cartilage declines at an average rate of 4% per year in subjects with symptomatic knee OA. There was evidence to support the concept that tracking occurs in OA. This may enable the prediction of cartilage change in an individual. The only significant factor affecting the loss of medial tibial cartilage was baseline knee pain, possibly through altered joint loading.  相似文献   

7.
Knee osteoarthritis (OA) is believed to result from high levels of contact stresses on the articular cartilage and meniscus after meniscal damage. This study investigated the effect of meniscal tears and partial meniscectomies on the peak compressive and shear stresses in the human knee joint. An elaborate three-dimensional finite element model of knee joint including bones, articular cartilages, menisci and main ligaments was developed from computed tomography and magnetic resonance imaging images. This model was used to model four types of meniscal tears and their resultant partial meniscectomies and analysed under an axial 1150 N load at 0° flexion. Three different conditions were compared: a healthy knee joint, a knee joint with medial meniscal tears and a knee joint following partial meniscectomies. The numerical results showed that each meniscal tear and its resultant partial meniscectomy led to an increase in the peak compressive and shear stresses on the articular cartilages and meniscus in the medial knee compartment, especially for partial meniscectomy. Among the four types of meniscal tears, the oblique tear resulted in the highest values of the peak compressive and shear stresses. For the four partial meniscectomies, longitudinal meniscectomy led to the largest increase in these two stresses. The lateral compartment was minimally affected by all the simulations. The results of this study demonstrate meniscal tear and its resultant partial meniscectomy has a positive impact on the maintenance of high levels of contact stresses, which may improve the progression of knee OA, especially for partial meniscectomy. Surgeons should adopt a prudent strategy to preserve the greatest amount of meniscus possible.  相似文献   

8.
The functional integrity of the articulating cartilage surface is a critical determinant of joint health. Although a variety of techniques exist to characterize the structural changes in the tissue with osteoarthritis (OA), some with extremely high resolution, most lack the ability to detect and monitor the functional changes that accompany the structural deterioration of this essential bearing surface. Atomic force microscopy (AFM) enables the acquisition of both structural and mechanical properties of the articular cartilage surface, with up to nanoscale resolution, making it particularly useful for evaluating the functional behavior of the macromolecular network forming the cartilage surface, which disintegrates in OA.In the present study, AFM was applied to the articular cartilage surfaces from six pairs of canine knee joints with post-traumatic OA. Microstructure (RMS roughness) and micromechanics (dynamic indentation modulus, E?) of medial femoral condyle cartilages were compared between contralateral controls and cruciate-transected knee joints, which develop early signs of OA by three months after surgery.Results reveal a significant increase in RMS roughness and a significant four-fold decrease in E? in cartilages from cruciate-transected joints versus contralateral controls. Compared to previous reports of changes in bulk mechanics, AFM was considerably more sensitive at detecting early cartilage changes due to cruciate-deficiency. The use of AFM in this study provides important new information on early changes in the natural history of OA because of its ability to sensitively detect and measure local structural and functional changes of the articular cartilage surface, the presumptive site of osteoarthritic initiation.  相似文献   

9.
Macroscopic structural damage to the cartilage articular surface can occur due to slicing in surgery, cracking in mechanical trauma, or fibrillation in early stage osteoarthrosis. These alterations may render cartilage matrix and chondrocytes susceptible to subsequent mechanical injury and contribute to progression of degenerative disease. To examine this hypothesis, single 300 microm deep vertical slices were introduced across a diameter of the articular surface of osteochondral explant disks on day 6 after dissection. Then a single uniaxial unconfined ramp compression at 7 x 10(-5) or 7 x 10(-2) s(-1) strain rate to a peak stress of 3.5 or 14 MPa was applied on day 13 during which mechanical behavior was monitored. Effects of slices alone and together with compression were measured in terms of explant swelling and cell viability on days 10 and 17. Slicing alone induced tissue swelling without significant cell death, while compression alone induced cell death without significant tissue swelling. Under low strain rate loading, no differences in the response to injurious compression were found between sliced and unsliced explants. Under high strain rate loading, slicing rendered cartilage more easily compressible and appeared to slightly reduce compression-induced cell and matrix injury. Findings highlight microphysical factors important to cartilage mechanical injury, and suggest ways that macroscopic structural damage may accelerate or, in certain cases, possibly slow the progression of cartilage degeneration.  相似文献   

10.
Boschetti F  Peretti GM 《Biorheology》2008,45(3-4):337-344
Osteoarthritis (OA) is a disease affecting articular cartilage and the underlying bone, resulting from many biological and mechanical interacting factors which change the extracellular matrix (ECM) and cells and lead to increasing levels of cartilage degeneration, like softening, fibrillation, ulceration and cartilage loss. The early diagnosis of the disease is fundamental to prevent pain, further tissue degeneration and reduce hospital costs. Although morphological modifications can be detected by modern non-invasive diagnostic techniques, they may not be evident in the early stages of OA. The mechanical properties of articular cartilage are related to its composition and structure and are sensitive to even small changes in the ECM that could occur in early OA. The aim of the present study was to compare the mechanical properties of healthy and OA cartilage using a combined experimental-numerical approach. Experimental assessments consisted of step wise confined and unconfined compression and tension stress relaxation tests on disks (for compression) or strips (for tension) of cartilage obtained from human femoral heads discarded from the operating room after total hip replacement. The numerical model was based on the biphasic theory and included the tension-compression non-linearity. Considering OA samples vs normal samples, the static compressive modulus was 55-68% lower, the permeability was 60-80% higher, the dynamic compressive modulus was 59-64% lower, the static tension modulus was 72-83% lower. The model successfully simulated the experimental tests performed on healthy and OA cartilage and was used in combination with the experimental tests to evaluate the role of different ECM components in the mechanical response of normal and OA cartilage.  相似文献   

11.
Loss of glycosaminoglycan (GAG) chains of proteoglycans (PGs) is an early event of osteoarthritis (OA) resulting in cartilage degradation that has been previously demonstrated in both huma and experimental OA models. However, the mechanism of GAG loss and the role of xylosyltransferase-I (XT-I) that initiates GAG biosynthesis onto PG molecules in the pathogenic process of human OA are unknown. In this study, we have characterized XT-I expression and activity together with GAG synthesis in human OA cartilage obtained from different regions of the same joint, defined as "normal", "late-stage" or adjacent to "late-stage". The results showed that GAG synthesis and content increased in cartilage from areas flanking OA lesions compared to cartilage from macroscopically "normal" unaffected regions, while decreased in "late-stage" OA cartilage lesions. This increase in anabolic state was associated with a marked upregulation of XT-I expression and activity in cartilage "next to lesion" while a decrease in the "late-stage" OA cartilage. Importantly, XT-I inhibition by shRNA or forced-expression with a pCMV-XT-I construct correlated with the modulation of GAG anabolism in human cartilage explants. The observation that XT-I gene expression was down-regulated by IL-1β and up-regulated by TGF-β1 indicates that these cytokines may play a role in regulating GAG content in human OA. Noteworthy, expression of IL-1β receptor (IL-1R1) was down-regulated whereas that of TGF-β1 was up-regulated in early OA cartilage. Theses observations may account for upregulation of XT-I and sustained GAG synthesis prior to the development of cartilage lesions during the pathogenic process of OA.  相似文献   

12.
目的:探讨红芪总多糖(HPS)及红芪多糖HG-1(HHG-1)对大鼠骨关节炎的治疗作用及机制。方法:将Wistar大鼠随机分为空白对照组、模型对照组、阳性对照组(透明质酸钠1.00 mg/joint)、HPS高低剂量组(HPS 1.05、0.35 mg/joint)、HHG-1高低剂量组(HHG-1 0.45、0.15 mg/joint)共7组(n=8),采用木瓜蛋白酶局部注射复制骨关节炎动物模型,经HPS及HHG-1的干预,测定关节活动范围、滑膜病理及其中糖胺多糖,全血粘度及血清抗氧化系统等指标变化,对HPS及HHG-1治疗骨关节炎的作用及机制进行研究。结果:HPS (0.35、1.05 mg/joint)及HHG-1(0.15、0.45 mg/joint)能明显增大骨关节炎大鼠膝关节的伸展角度,缓解关节软骨病理变化,抑制关节面滑膜异常增厚,提高滑膜中糖胺多糖的含量;同时HPS及HHG-1可降低大鼠血液粘度,提高血清超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性,降低丙二醛(MDA)的含量(P<0.05,P<0.01)。结论:HPS及HHG-1对骨关节炎有一定的治疗作用,但二者的疗效无明显差异;改善血液流变学而缓解软骨代谢异常、提高抗氧化酶活性而缓解软骨损伤是其作用机制之一。  相似文献   

13.
The object of this study was to assess the efficacy of Polycan from Aureobasidium pullulans SM-2001, which is composed mostly of beta-1,3-1,6-glucan, on osteoarthritis (OA)-induced by anterior cruciate ligament transection and partial medial meniscectomy (ACLT&PMM). Three different dosages of Polycan (85, 42.5, and 21.25 mg/kg) were orally administered once a day for 84 days to male rats a week after ACLT&PMM surgery. Changes in the circumference and maximum extension angle of each knee, and in cartilage histopathology were assessed using Mankin scores 12 weeks after Polycan administration. In addition, cartilage proliferation was evaluated using bromodeoxyuridine (BrdU). As the result of ACLT&PMM, classic OA was induced with increases in maximum extension angles, edematous knees changes, and capsule thickness, as well as decreases in chondrocyte proliferation, cartilages degenerative changes, and loss of articular cartilage. However, these changes (except for capsule thickness) were markedly inhibited in all Polycan- and diclofenac sodium-treated groups compared with OA control. Although diclofenac sodium did not influence BrdU uptake, BrdU-immunoreactive cells were increased with all dosages of Polycan, which means that Polycan treatment induced proliferation of chondrocytes in the surface articular cartilage of the tibia and femur. The results obtained in this study suggest that 84 days of continuous oral treatment of three different dosages of Polycan led to lesser degrees of articular stiffness and histological cartilage damage compared with OA controls 91 days after OA inducement, suggesting that the optimal Polycan dosage to treat OA is 42.5 mg/kg based on the present study.  相似文献   

14.
Damage to the anterior talofibular ligament (ATFL) and cacaneofibular ligament (CFL) during an ankle sprain may be linked to the development of osteoarthritis. Although altered tibiotalar kinematics have been demonstrated, the effects of lateral ankle instability (LAI) on in vivo cartilage strains have not been described. We hypothesized that peak cartilage strains increase, and the location is shifted in patients with ATFL injuries. We used 3-D MRI models and biplanar fluoroscopy to evaluate in vivo cartilage contact strains in seven patients with unilateral LAI. Subjects had chronic unilateral ATFL injury or combined ATFL and CFL injury, and were evaluated with increasing load while stepping onto a force plate. Peak cartilage strain and the location of the peak strain were measured using the contralateral normal ankle as a control. Ankles with LAI demonstrated significantly increased peak strain when compared with ATFL-intact controls. For example, at 100% body weight, peak strain was 29±8% on the injured side compared to 21±5% on the intact side. The position of peak strain on the injured ankle also showed significant anterior translation and medial translation. At 100% body weight, the location of peak strain in the injured ankle translated anteriorly by 15.5±7.1 mm and medially by 12.9±4.3 mm relative to the intact ankle. These changes correspond to the region of clinically observed osteoarthritis. Chronic LAI, therefore, may contribute to the development of tibiotalar cartilage degeneration due to altered cartilage strains.  相似文献   

15.
We used data from a longitudinal observation study to determine whether markers of cartilage turnover could serve as predictors of cartilage loss on magnetic resonance imaging (MRI). We conducted a study of data from the Boston Osteoarthritis of the Knee Study (BOKS), a completed natural history study of knee osteoarthritis (OA). All subjects in the study met American College of Rheumatology criteria for knee OA. Baseline and follow-up knee magnetic resonance images were scored for cartilage loss by means of the WORMS (Whole Organ Magnetic Resonance Imaging Score) semiquantitative grading scheme. Within the BOKS population, 80 subjects who experienced cartilage loss and 80 subjects who did not were selected for the purposes of this nested case control study. We assessed the baseline levels of cartilage degradation and synthesis products by means of assays for type I and II cleavage by collagenases (Col2:3/4C(short) or C1,2C), type II cleavage only with Col2:3/4C(longmono) (C2C), type II synthesis (C-propeptide), the C-telopeptide of type II (Col2CTx), aggrecan 846 epitope, and cartilage oligomeric matrix protein (COMP). We performed a logistic regression to examine the relation of levels of each biomarker to the risk of cartilage loss in any knee. All analyses were adjusted for gender, age, and body mass index (BMI); results stratified by gender gave similar results. One hundred thirty-seven patients with symptomatic knee OA were assessed. At baseline, the mean (standard deviation) age was 67 (9) years and 54% were male. Seventy-six percent of the subjects had radiographic tibiofemoral OA (Kellgren & Lawrence grade of greater than or equal to 2) and the remainder had patellofemoral OA. With the exception of COMP, none of the other biomarkers was a statistically significant predictor of cartilage loss. For a 1-unit increase in COMP, the odds of cartilage loss increased 6.09 times (95% confidence interval [CI] 1.34 to 27.67). After the analysis of COMP was adjusted for age, gender, and BMI, the risk for cartilage loss was 6.35 (95% CI 1.36 to 29.65). Among subjects with symptomatic knee OA, a single measurement of increased COMP predicted subsequent cartilage loss on MRI. The other biochemical markers of cartilage synthesis and degradation do not facilitate prediction of cartilage loss. With the exception of COMP, if changes in cartilage turnover in patients with symptomatic knee OA are associated with cartilage loss, they do not appear to affect systemic biomarker levels.  相似文献   

16.
The objective of this study was to further explore the cartilage volume changes in knee osteoarthritis (OA) over time using quantitative magnetic resonance imaging (qMRI). These were correlated with demographic, clinical, and radiological data to better identify the disease risk features. We selected 107 patients from a large trial (n = 1,232) evaluating the effect of a bisphosphonate on OA knees. The MRI acquisitions of the knee were done at baseline, 12, and 24 months. Cartilage volume from the global, medial, and lateral compartments was quantified. The changes were contrasted with clinical data and other MRI anatomical features. Knee OA cartilage volume losses were statistically significant compared to baseline values: -3.7 ± 3.0% for global cartilage and -5.5 ± 4.3% for the medial compartment at 12 months, and -5.7 ± 4.4% and -8.3 ± 6.5%, respectively, at 24 months. Three different populations were identified according to cartilage volume loss: fast (n = 11; -13.2%), intermediate (n = 48; -7.2%), and slow (n = 48; -2.3%) progressors. The predictors of fast progressors were the presence of severe meniscal extrusion (p = 0.001), severe medial tear (p = 0.005), medial and/or lateral bone edema (p = 0.03), high body mass index (p < 0.05, fast versus slow), weight (p < 0.05, fast versus slow) and age (p < 0.05 fast versus slow). The loss of cartilage volume was also slightly associated with less knee pain. No association was found with other Western Ontario McMaster Osteoarthritis Index (WOMAC) scores, joint space width, or urine biomarker levels. Meniscal damage and bone edema are closely associated with more cartilage volume loss. These data confirm the significant advantage of qMRI for reliably measuring knee structural changes at as early as 12 months, and for identifying risk factors associated with OA progression.  相似文献   

17.

Introduction

Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage.

Methods

We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients.

Results

Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages.

Conclusions

CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.  相似文献   

18.
Objectives: Although overuse running injury risks for the ankle and knee are high, the effect of different shoe designs on Achilles tendon force (ATF) and Patellofemoral joint contact force (PTF) loading rates are unclear. Therefore, the primary objective of this study was to compare the ATF at the ankle and the PTF and Patellofemoral joint stress force (PP) at the knee using different running shoe designs (forefoot shoes vs. normal shoes). Methods: Fourteen healthy recreational male runners were recruited to run over a force plate under two shoe conditions (forefoot shoes vs. normal shoes). Sagittal plane ankle and knee kinematics and ground reaction forces were simultaneously recorded. Ankle joint mechanics (ankle joint angle, velocity, moment and power) and the ATF were calculated. Knee joint mechanics (knee joint angle velocity, moment and power) and the PTF and PP were also calculated. Results: No significant differences were observed in the PTF, ankle plantarflexion angle, ankle dorsiflexion power, peak vertical active force, contact time and PTF between the two shoe conditions. Compared to wearing normal shoes, wearing the forefoot shoes demonstrated that the ankle dorsiflexion angle, knee flexion velocity, ankle dorsiflexion moment extension, knee extension moment, knee extension power, knee flexion power and the peak patellofemoral contact stress were significantly reduced. However, the ankle dorsiflexion velocity, ankle plantarflexion velocity, ankle plantarflexion moment and Achilles tendons force increased significantly. Conclusions: These findings suggest that wearing forefoot shoes significantly decreases the patellofemoral joint stress by reducing the moment of knee extension, however the shoes increased the ankle plantarflexion moment and ATF force. The forefoot shoes effectively reduced the load on the patellofemoral joint during the stance phase of running. However, it is not recommended for new and novice runners and patients with Achilles tendon injuries to wear forefoot shoes.  相似文献   

19.
Cartilage regeneration in the adult rabbit ear was examined with respect to glycosaminoglycan (GAG) synthesis at various stages of the regeneration process. Increased hyaluronic acid and chondroitin sulfate synthesis was first seen 31 days after wounding, when a metachromatic cartilage matrix could be distinguished from blastemal cells. Analysis of cartilage and the overlying skin separately showed that 90% of the labeled chondroitin sulfate was found in the cartilage being regenerated. DEAE-cellulose chromatography of GAG preparations from 35-day regenerating cartilages showed hyaluronic acid and chondroitin sulfate peaks eluting in the same position as those isolated from normal cartilages. The identity of the hyaluronic acid and chondroitin sulfate peaks was confirmed by their susceptibility to Streptomyces hyaluronidase and chondroitinase ABC, respectively. Although the degree of sulfation in normal and regenerated cartilages was similar, the ratio of chondroitin 6-sulfate to chondroitin 4-sulfate was increased in regenerated cartilages. GAG preparations from unlabeled cartilages were digested with chondroitinase ABC and the disaccharide digestive products were identified and quantitiated. Normal cartilage had a ΔDi-6SΔDi-4S ratio of 0.27; the same ratio for the regenerated cartilage was 1.58.  相似文献   

20.
Evidence suggests that mechanical load is related to structural destruction of disk annulus fibrosus (AF) either in adult disk degeneration or in child disk acute injury. Both biochemical and biomechanical properties are different between immature and mature disks. However, the effects of mechanical compression on immature AF are not fully clear. This study was to investigate the effects of a relatively wide range of dynamic compressive frequency on matrix homeostasis within the immature AF. Immature disks from pig (3–4 months) were randomly assigned into the control group (non-compression) and compression groups (0.1, 0.5, 1.0, 3.0 and 5.0 Hz). All disks were bioreactor-cultured for 7 days. AF matrix production was evaluated by histology, gene expression, glycosaminoglycan (GAG) content, hydroxyproline (HYP) content and immunohistochemistry. Generally, no obvious difference was found in HE staining between control group and compression groups. However, alcian blue staining indicated proteoglycan content in the 5.0-Hz group was decreased compared with the control group and other compression groups. Similarly, a catabolic remodeling gene expression profile with the down-regulated matrix genes (aggrecan, collagen I and collagen II) and tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-3) and the up-regulated matrix catabolic enzymes (ADAMTS-4 and MMP-3) was found in the 5.0-Hz group. Further analysis indicated that GAG content, HYP content and aggrecan protein deposition were also decreased in the 5.0-Hz group. Hence, we concluded that matrix homeostasis within the immature AF was compressive frequency dependent, and the relatively higher frequency (5.0 Hz) is unfavorable for matrix production within the immature AF. These findings will contribute to further understanding of the relationship between mechanical compression and immature AF biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号