首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ascertainment problem arises when families are sampled by a nonrandom process and some assumption about this sampling process must be made in order to estimate genetic parameters. Under classical ascertainment assumptions, estimation of genetic parameters cannot be separated from estimation of the parameters of the ascertainment process, so that any misspecification of the ascertainment process causes biases in estimation of the genetic parameters. Ewens and Shute proposed a resolution to this problem, involving conditioning the likelihood of the sample on the part of the data which is "relevant to ascertainment." The usefulness of this approach can only be assessed by examining the properties (in particular, bias and standard error) of the estimates which arise by using it for a wide range of parameter values and family size distributions and then comparing these biases and standard errors with those arising under classical ascertainment procedures. These comparisons are carried out in the present paper, and we also compare the proposed method with procedures which condition on, or ignore, parts of the data.  相似文献   

2.
W J Ewens  B Asaba 《Biometrics》1984,40(2):367-374
It is argued that, in any ascertainment sampling scheme using data from families of various sizes, there is never any need to assume a particular form for the (unknown) family-size distribution. There exists a simple conditional method, making no assumptions about the family-size distribution, that is always preferable to the assumption of any particular distributional form. Furthermore, the simplicity of the conditional method gives insights into properties of estimates of genetic and ascertainment parameters, which are not available when a particular form for the family-size distribution is assumed.  相似文献   

3.
A resolution of the ascertainment sampling problem. III. Pedigrees.   总被引:4,自引:3,他引:1       下载免费PDF全文
When nuclear families are sampled by an ascertainment procedure whose properties are not known, biased estimates of genetic parameters will arise if an incorrect specification of the ascertainment procedure is made. Elsewhere we have put forward a resolution of this problem by introducing an ascertainment-assumption-free (AAF) method, for nuclear family data, which gives asymptotically unbiased estimators no matter what the true nature of the ascertainment process. In the present paper we extend this method to cover pedigree data. Problems that arise with pedigrees but not with families--for example, the question of which families in a pedigree are "ascertainable"--are also considered. Comparisons of numerical results for pedigrees and nuclear families are also made.  相似文献   

4.
Accurate estimates of the penetrance rate of autosomal dominant conditions are important, among other issues, for optimizing recurrence risks in genetic counseling. The present work on penetrance rate estimation from pedigree data considers the following situations: 1) estimation of the penetrance rate K (brief review of the method); 2) construction of exact credible intervals for K estimates; 3) specificity and heterogeneity issues; 4) penetrance rate estimates obtained through molecular testing of families; 5) lack of information about the phenotype of the pedigree generator; 6) genealogies containing grouped parent-offspring information; 7) ascertainment issues responsible for the inflation of K estimates.  相似文献   

5.
Autism is a severe developmental disorder of unknown etiology but with evidence for genetic influences. Here, we provide evidence for a genetic basis of several quantitative traits that are related to autism. These traits, from the Broader Phenotype Autism Symptom Scale (BPASS), were measured in nuclear families, each ascertained through two probands affected by autism spectrum disorder. The BPASS traits capture the continuum of severity of impairments and may be more informative for genetic studies than are the discrete diagnoses of autism that have been used by others. Using a sample of 201 nuclear families consisting of a total of 694 individuals, we implemented multivariate polygenic models with ascertainment adjustment to estimate heritabilities and genetic and environmental correlations between these traits. Our ascertainment adjustment uses conditioning on the phenotypes of probands, requires no modeling of the ascertainment process, and is applicable to multiplex ascertainment and multivariate traits. This appears to be the first such implementation for multivariate quantitative traits. The marked difference between heritability estimates of the trait for language onset with and without an ascertainment adjustment (0.08 and 0.22, respectively) shows that conclusions are sensitive to whether or not an ascertainment adjustment is used. Among the five BPASS traits that were analyzed, the traits for social motivation and range of interest/flexibility show the highest heritability (0.19 and 0.16, respectively) and also have the highest genetic correlation (0.92). This finding suggests a shared genetic basis of these two traits and that they may be most promising for future gene mapping and for extending pedigrees by phenotyping additional relatives.  相似文献   

6.
Bogdan M  Doerge RW 《Heredity》2005,95(6):476-484
In many empirical studies, it has been observed that genome scans yield biased estimates of heritability, as well as genetic effects. It is widely accepted that quantitative trait locus (QTL) mapping is a model selection procedure, and that the overestimation of genetic effects is the result of using the same data for model selection as estimation of parameters. There are two key steps in QTL modeling, each of which biases the estimation of genetic effects. First, test procedures are employed to select the regions of the genome for which there is significant evidence for the presence of QTL. Second, and most important for this demonstration, estimates of the genetic effects are reported only at the locations for which the evidence is maximal. We demonstrate that even when we know there is just one QTL present (ignoring the testing bias), and we use interval mapping to estimate its location and effect, the estimator of the effect will be biased. As evidence, we present results of simulations investigating the relative importance of the two sources of bias and the dependence of bias of heritability estimators on the true QTL heritability, sample size, and the length of the investigated part of the genome. Moreover, we present results of simulations demonstrating the skewness of the distribution of estimators of QTL locations and the resulting bias in estimation of location. We use computer simulations to investigate the dependence of this bias on the true QTL location, heritability, and the sample size.  相似文献   

7.
We developed a likelihood-based method for testing for parent-of-origin effect in complex diseases. The likelihood formulations model parent-of-origin effect and allow for incorporation of ascertainment, as well as differential male and female ascertainment probabilities. The results based on simulated data indicated that the estimates of parental effect (either maternal or paternal) were biased when ascertainment was ignored or when the wrong ascertainment model was used. The exception was single ascertainment, in which we proved that ignoring ascertainment does not bias the estimation of parental effect, in a simple parent-of-origin model. These results underscore the importance of considering ascertainment models when testing for parent-of-origin effect in complex diseases.  相似文献   

8.
Feng R  Zhang H 《Human genetics》2006,119(4):429-435
Most genetic studies recruit high risk families and the discoveries are based on non-random selected groups. We must consider the consequences of this ascertainment process in order to apply the results of genetic research to the general population. In previous reports, we developed a latent variable model to assess the familial aggregation and inheritability of ordinal-scaled diseases, and found a major gene component of alcoholism after applying the model to the data from the Yale family study of comorbidity of alcoholism and anxiety (YFSCAA). In this report, we examine the ascertainment effects on parameter estimates and correct potential bias in the latent variable model. The simulation studies for various ascertainment schemes suggest that our ascertainment adjustment is necessary and effective. We also find that the estimated effects are relatively unbiased for the particular ascertainment scheme used in the YFSCAA, which assures the validity of our earlier conclusion.  相似文献   

9.
On Ewens'' equivalence theorem for ascertainment sampling schemes   总被引:1,自引:1,他引:0       下载免费PDF全文
The usual likelihood formulations for segregation analysis of a genetic trait ignore both the at-risk but unobservable families and the demographic structure of the surrounding population. Families are not ascertained if, by chance, they have no affected members or if the affected members are not ascertained. Ewens has shown that likelihoods which take into explicit account both unobservable families and demographic parameters lead to the same maximum likelihood estimates of segregation and ascertainment parameters as the usual likelihoods. This paper provides an alternative proof of Ewens' theorem based on the Poisson distribution and simple continuous optimization techniques.  相似文献   

10.
Hodgkin–Huxley (HH) models of neuronal membrane dynamics consist of a set of nonlinear differential equations that describe the time-varying conductance of various ion channels. Using observations of voltage alone we show how to estimate the unknown parameters and unobserved state variables of an HH model in the expected circumstance that the measurements are noisy, the model has errors, and the state of the neuron is not known when observations commence. The joint probability distribution of the observed membrane voltage and the unobserved state variables and parameters of these models is a path integral through the model state space. The solution to this integral allows estimation of the parameters and thus a characterization of many biological properties of interest, including channel complement and density, that give rise to a neuron’s electrophysiological behavior. This paper describes a method for directly evaluating the path integral using a Monte Carlo numerical approach. This provides estimates not only of the expected values of model parameters but also of their posterior uncertainty. Using test data simulated from neuronal models comprising several common channels, we show that short (<50 ms) intracellular recordings from neurons stimulated with a complex time-varying current yield accurate and precise estimates of the model parameters as well as accurate predictions of the future behavior of the neuron. We also show that this method is robust to errors in model specification, supporting model development for biological preparations in which the channel expression and other biophysical properties of the neurons are not fully known.  相似文献   

11.
Shwachman-Diamond syndrome is a rare disorder of unknown cause. Reports have indicated the occurrence of affected siblings, but formal segregation analysis has not been performed. In families collected for genetic studies, the mean paternal age and mean difference in parental ages were found to be consistent with the general population. We determined estimates of segregation proportion in a cohort of 84 patients with complete sibship data under the assumption of complete ascertainment, using the Li and Mantel estimator, and of single ascertainment with the Davie modification. A third estimate was also computed with the expectation-maximization (EM) algorithm. All three estimates supported an autosomal recessive mode of inheritance, but complete ascertainment was found to be unlikely. Although there are no overt signs of disease in adult carriers (parents), the use of serum trypsinogen levels to indicate exocrine pancreatic dysfunction was evaluated as a potential measure for heterozygote expression. No consistent differences were found in levels between parents and a normal control population. Although genetic heterogeneity cannot be excluded, our results indicate that simulation and genetic analyses of Shwachman-Diamond syndrome should consider a recessive model of inheritance.  相似文献   

12.
Thomas SC  Hill WG 《Genetics》2000,155(4):1961-1972
Previous techniques for estimating quantitative genetic parameters, such as heritability in populations where exact relationships are unknown but are instead inferred from marker genotypes, have used data from individuals on a pairwise level only. At this level, families are weighted according to the number of pairs within which each family appears, hence by size rather than information content, and information from multiple relationships is lost. Estimates of parameters are therefore not the most efficient achievable. Here, Markov chain Monte Carlo techniques have been used to partition the population into complete sibships, including, if known, prior knowledge of the distribution of family sizes. These pedigrees have then been used with restricted maximum likelihood under an animal model to estimate quantitative genetic parameters. Simulations to compare the properties of parameter estimates with those of existing techniques indicate that the use of sibship reconstruction is superior to earlier methods, having lower mean square errors and showing nonsignificant downward bias. In addition, sibship reconstruction allows the estimation of population allele frequencies that account for the relationships within the sample, so prior knowledge of allele frequencies need not be assumed. Extensions to these techniques allow reconstruction of half sibships when some or all of the maternal genotypes are known.  相似文献   

13.
Pedigree data can be evaluated, and subsequently corrected, by analysis of the distribution of genetic markers, taking account of the possibility of mistyping . Using a model of pedigree error developed previously, we obtained the maximum likelihood estimates of error parameters in pedigree data from Tokelau. Posterior probabilities for the possible true relationships in each family are conditional on the putative relationships and the marker data are calculated using the parameter estimates. These probabilities are used as a basis for discriminating between pedigree error and genetic marker errors in families where inconsistencies have been observed. When applied to the Tokelau data and compared with the results of retyping inconsistent families, these statistical procedures are able to discriminate between pedigree and marker error, with approximately 90% accuracy, for families with two or more offspring. The large proportion of inconsistencies inferred to be due to marker error (61%) indicates the importance of discriminating between error sources when judging the reliability of putative relationship data. Application of our model of pedigree error has proved to be an efficient way of determining and subsequently correcting sources of error in extensive pedigree data collected in large surveys.  相似文献   

14.
One of the first and most important steps in planning a genetic association study is the accurate estimation of the statistical power under a proposed study design and sample size. In association studies for candidate genes or in fine-mapping applications, allele and genotype frequencies are often assumed to be known when, in fact, they are unknown (i.e., random variables from some distribution). For example, if we consider a diallelic marker with allele frequencies of 0.5 and 0.5 and Hardy-Weinberg proportions, the three genotype frequencies are often assumed to be 0.25, 0.50, and 0.25, and the statistical power is calculated. Unfortunately, ignoring this source of variation can inflate the estimated power of the study. In the present article, we propose averaging the estimates of power over the distribution of the genotype frequencies to calculate the true estimate of power for a fixed allele frequency. For the usual situation, in which allele frequencies in a population are not known, we propose placing a prior distribution on the allele frequency, taking advantage of any available genotype information. This Bayesian approach provides a more accurate estimate of power. We present examples for quantitative and qualitative traits in cohort studies of unrelated individuals and results from an extensive series of examples that show that ignoring the uncertainty in allele frequencies can inflate the estimated power of the study. We also present the results from case-control studies and show that standard methods may also overestimate power. As discussed in this article, the approach of fixing allele frequencies even if they are not known is the common approach to power calculations. We show that ignoring the sources of variation in allele frequencies tends to result in overestimates of power and, consequently, in studies that are underpowered. Software in C is available at http://www.ambrosius.net/Power/.  相似文献   

15.
Schoen DJ  Clegg MT 《Genetics》1986,112(4):927-945
Estimation of mating system parameters in plant populations typically employs family-structured samples of progeny genotypes. These estimation models postulate a mixture of self-fertilization and random outcrossing. One assumption of such models concerns the distribution of pollen genotypes among eggs within single maternal families. Previous applications of the mixed mating model to mating system estimation have assumed that pollen genotypes are sampled randomly from the total population in forming outcrossed progeny within families. In contrast, the one-pollen parent model assumes that outcrossed progeny within a family share a single-pollen parent genotype. Monte Carlo simulations of family-structured sampling were carried out to examine the consequences of violations of the different assumptions of the two models regarding the distribution of pollen genotypes among eggs. When these assumptions are violated, estimates of mating system parameters may be significantly different from their true values and may exhibit distributions which depart from normality. Monte Carlo methods were also used to examine the utility of the bootstrap resampling algorithm for estimating the variances of mating system parameters. The bootstrap method gives variance estimates that approximate empirically determined values. When applied to data from two plant populations which differ in pollen genotype distributions within families, the two estimation procedures exhibit the same behavior as that seen with the simulated data.  相似文献   

16.
Summary Heritability estimated from sire family variance components, ignoring dams, pools conventional paternal and maternal half sib estimates, in a way which is biased upward, and sub-optimal for minimizing the sampling variance. Standard error of a sire family estimate will be smaller than that of the equivalent paternal half sib estimate, but not as small as that of an estimate obtained by optimal pooling of paternal and maternal half sib estimates. If only additive genetic variance components are significant, the bias may be removed by use of a computed average genetic relationship for sire families, in place of a nominal R = 0.25. Average genetic relationship may be computed from mean and variance of dam family size within sire families. If dominance, epistatic, or maternal components are significant, this simple correction is not appropriate. In situations likely to be encountered in large domestic species such as sheep and cattle (dam family size small and uniform) bias will be negligible. The method could be useful where cost of dam identification is a limiting factor.  相似文献   

17.
Growing interest in adaptive evolution in natural populations has spurred efforts to infer genetic components of variance and covariance of quantitative characters. Here, I review difficulties inherent in the usual least-squares methods of estimation. A useful alternative approach is that of maximum likelihood (ML). Its particular advantage over least squares is that estimation and testing procedures are well defined, regardless of the design of the data. A modified version of ML, REML, eliminates the bias of ML estimates of variance components. Expressions for the expected bias and variance of estimates obtained from balanced, fully hierarchical designs are presented for ML and REML. Analyses of data simulated from balanced, hierarchical designs reveal differences in the properties of ML, REML, and F-ratio tests of significance. A second simulation study compares properties of REML estimates obtained from a balanced, fully hierarchical design (within-generation analysis) with those from a sampling design including phenotypic data on parents and multiple progeny. It also illustrates the effects of imposing nonnegativity constraints on the estimates. Finally, it reveals that predictions of the behavior of significance tests based on asymptotic theory are not accurate when sample size is small and that constraining the estimates seriously affects properties of the tests. Because of their great flexibility, likelihood methods can serve as a useful tool for estimation of quantitative-genetic parameters in natural populations. Difficulties involved in hypothesis testing remain to be solved.  相似文献   

18.
We present the one‐inflated zero‐truncated negative binomial (OIZTNB) model, and propose its use as the truncated count distribution in Horvitz–Thompson estimation of an unknown population size. In the presence of unobserved heterogeneity, the zero‐truncated negative binomial (ZTNB) model is a natural choice over the positive Poisson (PP) model; however, when one‐inflation is present the ZTNB model either suffers from a boundary problem, or provides extremely biased population size estimates. Monte Carlo evidence suggests that in the presence of one‐inflation, the Horvitz–Thompson estimator under the ZTNB model can converge in probability to infinity. The OIZTNB model gives markedly different population size estimates compared to some existing truncated count distributions, when applied to several capture–recapture data that exhibit both one‐inflation and unobserved heterogeneity.  相似文献   

19.
We explore the estimation of uncertainty in evolutionary parameters using a recently devised approach for resampling entire additive genetic variance–covariance matrices ( G ). Large‐sample theory shows that maximum‐likelihood estimates (including restricted maximum likelihood, REML) asymptotically have a multivariate normal distribution, with covariance matrix derived from the inverse of the information matrix, and mean equal to the estimated G . This suggests that sampling estimates of G from this distribution can be used to assess the variability of estimates of G , and of functions of G . We refer to this as the REML‐MVN method. This has been implemented in the mixed‐model program WOMBAT. Estimates of sampling variances from REML‐MVN were compared to those from the parametric bootstrap and from a Bayesian Markov chain Monte Carlo (MCMC) approach (implemented in the R package MCMCglmm). We apply each approach to evolvability statistics previously estimated for a large, 20‐dimensional data set for Drosophila wings. REML‐MVN and MCMC sampling variances are close to those estimated with the parametric bootstrap. Both slightly underestimate the error in the best‐estimated aspects of the G matrix. REML analysis supports the previous conclusion that the G matrix for this population is full rank. REML‐MVN is computationally very efficient, making it an attractive alternative to both data resampling and MCMC approaches to assessing confidence in parameters of evolutionary interest.  相似文献   

20.
Summary Limits on physiological processes, though perhaps unknown, must exist. The reported simulations evaluate the effect of a physiological limit on the estimation of genetic parameters and genetic progress. Simulation experiments reveal no change in the estimate of heritability, even for limits as restrictive as 1.5 phenotypic standard deviations above the population mean. However, estimates of additive genetic and environmental variance shrink as limits on performance increase in severity. Simulated physiological limits do not affect the rate of genetic progress. However, absolute measures of estimated genetic change are less than those predicted by response equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号