首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triacylglycerol (TG) hydrolase activities were characterized in myocytes isolated from rat hearts. Acid hydrolase activity with a pH optimum of 5 could be measured in myocyte homogenates, and the subcellular distribution suggested that this activity originated in lysosomes. Lipoprotein lipase (LPL) was also present in myocyte homogenates, as evidenced by TG hydrolase activity that was stimulated by serum and apolipoprotein CII, and inhibited by apolipoprotein CIII2, high ionic strength (NaCl and MgCl2, I = 1 M) and antibodies to LPL. Serum-independent neutral (pH 7.5) TG hydrolase activity was less sensitive to inhibition by 1 M-NaCl, by antibodies to LPL and by preincubation at 40 degrees C than was serum-stimulated hydrolase activity. Furthermore, there were modest but significant differences in the subcellular distribution of the serum-independent and serum-stimulated hydrolase activities. Hydrolase activities in myocyte homogenates could be solubilized by 7.2 mM-deoxycholate. Acid hydrolase activity was recovered in the unbound fraction after heparin-Sepharose chromatography, whereas LPL was bound to the affinity column and was eluted by 0.9-1.2 M-NaCl. Approximately one-third of the serum-independent TG hydrolase activity was not bound to the heparin-Sepharose affinity column. This unbound TG hydrolase activity had a pH optimum of 7 and was stimulated by 50 mM-MgCl2, but not by serum and was resistant to inhibition by high ionic strength (1 M-NaCl), to preincubation at 40 degrees C for 2 h, and by antibodies to LPL. It is concluded that, in addition to an acid lysosomal TG hydrolase and LPL, myocytes from rat heart contain a serum-independent TG hydrolase with unique characteristics.  相似文献   

2.
The present study was addressed to determine whether the high expression of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in rat liver during the perinatal stage plays a role in the induction of liver lipoprotein lipase (LPL) expression and activity. Parallel increases in liver mRNA PPAR-alpha and LPL activity were found in newborn rats, and after a slight decline, values remained elevated until weaning. Anticipated weaning for 3 days caused a decline in those two variables as well as in the mRNA LPL level, and a similar change was also found in liver triacylglycerol concentration. Force-feeding with Intralipid in 10-day-old rats or animals kept fasted for 5 h showed high mRNA-PPARalpha and -LPL levels as well as LPL activity with low plasma insulin and high FFA levels, whereas glucose and a combination of glucose and Intralipid produced low mRNA-PPARalpha and -LPL levels as well as LPL activity. Under these latter conditions, plasma insulin and FFA levels were high in those rats receiving the combination of glucose and Intralipid, whereas plasma FFA levels were low in those force-fed with glucose. It is proposed that the hormonal and nutritional induction of liver PPAR-alpha expression around birth and its maintained elevated level throughout suckling is responsible for the induction of liver LPL-expression and activity during suckling.  相似文献   

3.
It was previously known that lipoprotein lipase (LPL) activity in plasma rises after infusion of a fat emulsion. To explore the mechanism we have compared the release of LPL by emulsion to that by heparin. After bolus injections of a fat emulsion (Intralipid) to rats, plasma LPL activity gradually rose 5-fold to a maximum at 6-8 min. During the same time the concentration of injected triacylglycerols (TG) decreased by about half. Hence, the time-course for plasma LPL activity was quite different from that for plasma TG. The disappearance of injected 125I-labelled bovine LPL from circulation was retarded by emulsion. This effect was more marked 30 min than 3 min after injection of the emulsion. The data indicate that the release of LPL into plasma is not solely due to binding of the lipase to the emulsion particles as such, but involves metabolism of the particles. Emulsion increased the fraction of labelled LPL found in adipose tissue, heart and the red muscle studied, but had no significant effect on the fraction found in liver. The effects of emulsion were quite different from those of heparin, which caused an immediate release of the lipase to plasma, decreased uptake of LPL in most extrahepatic tissues by 60-95%, and increased the fraction taken up in the liver.  相似文献   

4.
Two triacylglycerol lipase activities were characterized after partial purification from pig post-heparin plasma. These two lipase activities were eluted sequentially with a NaCl gradient from columns containing Sepharose with covalently linked heparin. The first lipase activity, which was eluted at 0.75M-NaCl, was not inhibited at 28 degrees C in the presence of 1M-NaCl and was not further activated by plasma apolipoproteins. The absence of this lipase activity from post-heparin plasma from hepatectomized pigs indicates that the liver plays a role in the synthesis of this enzyme. A second lipase activity, which was eluted at 1.2M-NaCl, was inhibited when assayed in the presence of 1.0M-NaCl and was activated 14-fold by an apolipoprotein isolated from human very-low-density lipoprotein. The characteristics are identical with those of lipoprotein lipase purified from pig adipose tissue.  相似文献   

5.
In newborn rats, lipoprotein lipase (LPL) activity was higher in the liver than in several other tissues, such as heart, diaphragm or lungs, and accounted for about 3% of total LPL activity in the body. There was no significant correlation between LPL activity in liver and in plasma. Thus transport of the enzyme from extrahepatic tissues was probably not the major source of LPL in liver. To study LPL biosynthesis directly, newborn rats were injected intraperitoneally with [35S]methionine, and LPL was isolated by immunoprecipitation and separation by SDS/polyacrylamide-gel electrophoresis. Radioactivity in LPL increased with a similar time course in all tissues studied, including the liver. Substantial synthesis of LPL was also demonstrated in isolated perfused livers from newborn rats, whereas synthesis was low in livers from adult rats. There was strong LPL immunofluorescence in livers from newborn rats, mainly within sinusoids and along the walls of larger vessels. This labelling disappeared after perfusion with heparin, which indicates that much of the enzyme is in contact with blood and can take part in lipoprotein metabolism.  相似文献   

6.
An attempt was made to activate the capillary-bound fraction of lipoprotein lipase (LPL) with cAMP-dependent protein kinase catalytic subunit (PKC). Following a 30s washout period, hearts were perfused for 1 min with buffer containing heparin. Medium was collected during the second 30s of heparin perfusion. Addition of PKC+Mg-ATP to this capillary bed perfusate increased LPL activity from 6.84 +/- 0.72 nmol/ml/min to 13.76 +/- 1.12 nmol/ml/min (P less than 0.001). A similar 2-fold increase in activity was observed when results were expressed on a mg protein basis. Removal of serum from, or addition of 1.0M NaCl to, the assay system inhibited PKC-stimulated LPL activity approximately 85%. These results indicate that capillary alkaline LPL can be activated by PKC assayed under experimental conditions free of other TG lipases. Moreover, these findings suggest that the intracellular fraction of LPL can be activated by cAMP and that this activation is mediated through protein phosphorylation by cAMP-dependent protein kinase.  相似文献   

7.
Tumour necrosis factor (TNF) has previously been shown to decrease lipoprotein lipase (LPL) activity and mRNA levels in 3T3-L1 cells and in adipose tissue from rats and guinea pigs when injected in vivo, but not to alter LPL activity in human adipocytes incubated in vitro. The effect of recombinant human TNF on LPL activity and mRNA levels in rat epididymal adipose tissue incubated in vitro was examined. LPL activity and mRNA levels fell in adipose tissue taken from fed rats and incubated in Krebs-Henseleit bicarbonate medium with glucose. The addition of insulin and dexamethasone prevented these falls. TNF (400 ng/ml) produced a fall of approx. 50% in LPL activity after 2 h of incubation and of approx. 30% in LPL mRNA levels after 3 h. TNF did not decrease LPL activity in isolated adipocytes. These results demonstrate that rat adipose tissue incubated in vitro is responsive to TNF whereas isolated adipocytes are not.  相似文献   

8.
Summary Heparin (5 U/ml) induced the release of LPL into the incubation medium of cardiac myocytes isolated from adult rat hearts. The secretion of LPL occurred in two phases: a rapid release (5–10 min of incubation with heparin) that was independent of protein synthesis followed by a slower rate of release that was inhibited by cycloheximide. The rapid release of LPL induced by heparin likely occurs from sites that are at or near the cell surface. LPL secretion could also be stimulated by heparan sulfate and dermatan sulfate, but not by hyaluronic acid, chondroitin sulfate or keratan sulfate. Heparin-releasable LPL activity measured in short-term incubations represented a large fraction (40–50%) of the initial LPL activity associated with myocytes, but the fall in cellular LPL activity following heparin was less than the amount of LPL activity secreted into the incubation medium. This discrepancy was not due to latency of LPL in the pre-heparin cell homogenates, but in part could be due to a three-fold greater affinity of the heparin-released enzyme for substrate as compared to LPL in post-heparin myocyte homogenates.Abbreviations LPL lipoprotein lipase  相似文献   

9.
Male rats were fasted for 3 days, subjected to streptozotocin-diabetes or injected with L-thyroxine, Kenacort-A40 (corticosteroid) and Synacthen (ACTH). Cardiac heparin-releasable lipoprotein lipase (LPL) activity was increased after fasting, experimental diabetes and all hormone treatments. Cardiac neutral lipase activity was decreased during diabetes and enhanced in the fasted state and by L-thyroxine, corticosteroid and ACTH administration. The close correlation between vascular LPL and tissue neutral lipase with cardiac triglyceride content is in agreement with the contention that tissue neutral lipase is similar to LPL (Hülsmann, Stam and Breeman 1982). Myocardial acid lipase activity was reduced during diabetes and L-thyroxine treatment, increased during fasting and corticosteroid administration and not affected by short-term ACTH treatment. Hepatic acid lipase activity was increased during fasting, diabetes and by L-thyroxine and reduced after corticosteroid and ACTH treatment. The alkaline liver lipase activity was depressed by fasting, experimental diabetes, corticosteroid and ACTH treatment, whereas L-thyroxine induced a slight increase in enzyme activity. The possible mechanism underlying the observed changes in acid, neutral, alkaline, and LPL activities in heart and liver are discussed.  相似文献   

10.
1. Intravenous injection of heparin into the trout resulted in the appearance in the plasma of a lipase with the properties of lipoprotein lipase. 2. The enzyme was purified to apparent electrophoretic homogeneity by means of heparin-Sepharose affinity chromatography. The enzyme was eluted with 1.5 M-NaCl and had a specific activity approx. 450-fold that of the post-heparin plasma. 3. The activity of the purified enzyme was inhibited by 1.0 M-NaCl and protamine sulphate and was stimulated between 3- and 8.8-fold by the addition of trout plasma. 4. The activity was strongly stimulated by trout very low density lipoproteins and to a lesser extent by high density lipoproteins. 5. The isolated enzyme fraction gave a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and had an apparent subunit M4 of 63 000. 6. These results suggest that the uptake of lipid by the tissues in the trout can occur by a process similar to that in mammals.  相似文献   

11.
The kinetics of inhibition of the esterase and lipase activities of bovine milk lipoprotein lipase (LPL) were compared. The esterase LPL activity against emulsified tributyrylglycerol was not affected by the enzyme activator apolipoprotein C-II (C-II) and amounted to about 15% of the "plus activator" lipase enzyme activity. Heparin at concentrations of 20 micrograms/ml inhibited 25% of the esterase activity. The reaction followed Henri-Michaelis-Menten kinetics and the inhibition by heparin followed a linear, intersecting, noncompetitive kinetic model. On the other hand, the basal lipase activity of LPL against emulsified trioleoylglycerol (TG) was very sensitive to inhibition by heparin: 1 microgram/ml inhibited about 80% of the reaction and 3 micrograms/ml drove the reaction to zero. The velocity curve for the uninhibited basal LPL activity was sigmoidal with an apparent nH(TG) of 2.94. Heparin inhibited the lipase activity competitively: heparin decreased nH(TG) and increased[TG]0.5 6.4-fold, while TG decreased the nH(Heparin) from 2.14 to 0.95 and caused a 3-fold increase in [Heparin]0.5. C-II, at concentrations lower than 2.5 X 10(-8) M (i.e., lower than KA), countered the inhibitory effects of heparin: at constant inhibitor concentrations, C-II increased nH(TG) from 1.78 to 2.52 and decreased [TG]0.5 about 10-fold; it also increased the apparent Vmax. At the lower C-II concentrations, nH(C-II) was approximately equal to 1.0 and increasing the TG concentrations decreased [C-II]0.5 from 3.8 X 10(-8) to 8.5 X 10(-9) M, with no effect on the nH(C-II). At the higher C-II concentrations, nH(C-II) was 2.5 and TG decreased [C-II]0.5 about 2-fold with no effect on the nH(C-II). In the absence of heparin, C-II had no effect on nH(TG) nor on [TG]0.5, but it increased the apparent Vmax. On the other hand, TG had no effect on nH(C-II) nor on [C-II]0.5, but at any given C-II concentration, the reaction velocity increased with increasing TG concentrations. It is concluded that TG and heparin as well as C-II and heparin are mutually exclusive and that lipoprotein lipase is a multisite enzyme, possibly a tetramer, with three high-affinity catalytic sites, and an equal number of sites for C-II and heparin per oligomer. However, LPL differs from classical allosteric enzymes in that its activator has no effect on substrate cooperativity nor on [S]0.5; its only effect is to increase Vmax by increasing the catalytic rate constant kp by inducing conformational changes in the enzyme.  相似文献   

12.
The effect of KCD-232, a new compound with a structure of 4-(4′-chlorobenzyloxy)benzyl nicotinate, on fructose-induced hypertriglyceridemia and fatty liver was studied in rats refed experimental diets for 3 days after having been starved for 2 days.

In younger or older rats refed 7% corn oil-containing diets, both the serum and liver triglyceride (TG) levels were higher in the fructose (F) group than in the glucose (G) group, and those of the F group were higher in the older rats than the younger rats. KCD-232 effectively inhibited fructose-induced hypertriglyceridemia and fatty liver in both the younger and older rats. In older rats refed 7% corn oil diets, an increase in hepatic fatty acid (FA) synthesis and decreases in the activities of hepatic TG lipase (HTGL) and adipose tissue lipoprotein lipase (LPL) were found in the F group, while the serum free FA level and hepatic FA oxidative activity of the F group were equal to those of the G group. KCD-232 strongly inhibited the fructose-enhanced FA synthesis, slightly repressed the fructose-suppressed HTGL activity and had no effect on LPL activity and FA oxidation.

These results suggest that fructose-induced hypertriglyceridemia and fatty liver are due to an enhanced hepatic FA synthesis and decreased hydrolytic activities required for TG clearance from the circulation system and that KCD-232 prevents them by inhibiting enhanced FA synthesis.  相似文献   

13.
Lipoprotein lipase and hepatic lipase were measured in rat plasma using specific antisera. Mean values for lipoprotein lipase in adult rats were 1.8-3.6 mU/ml, depending on sex and nutritional state. Values for hepatic lipase were about three times higher. Lipoprotein lipase activity in plasma of newborn rats was 2-4-times higher than in adults. In contrast, hepatic lipase activity was lower in newborn than in adult rats. Following functional hepatectomy there was a progressive increase in lipoprotein lipase activity in plasma, indicating that transport of the enzyme from peripheral tissues to the liver normally takes place. Lipoprotein lipase, but not hepatic lipase, increased in plasma after a fat meal. An even more marked increase, up to 30 mU/ml, was seen after intravenous injection of Intralipid. Plasma lipase activity decreased in parallel with clearing of the injected triacylglycerol. 125I-labeled lipoprotein lipase injected intravenously during the hyperlipemia disappeared somewhat slower from the circulation than in fasted rats, but the uptake was still primarily in the liver. Hyperlipemia, or injection of heparin, led to increased lipoprotein lipase activity in the liver. This was seen even when the animals had been pretreated with cycloheximide to inhibit synthesis of new enzyme protein. These results suggest that during hypertriglyceridemia lipoprotein lipase binds to circulating lipoproteins/lipid droplets which results in increased plasma levels of the enzyme and increased transport to the liver.  相似文献   

14.
The effect of ginseng saponins isolated from red ginseng (a steamed and dried root of Panax ginseng) has been studied in a cyclophosphamide (CPM)-induced hyperlipidemia model in fasted rabbits. In this model, chylomicrons and very low density lipoprotein (VLDL) accumulation was known to occur as a result of reduction in lipoprotein lipase (LPL) activity in the heart and heparin-releasable heart LPL. Oral administration of ginseng saponins at a dose of 0.01 g/kg for 4 weeks was found to reverse the increase in serum triglycerides (TG) and concomitant increase in cholesterol produced by CPM treatment, especially in chylomicrons and VLDL. In addition, ginseng saponins treatment led to a recovery in postheparin plasma LPL activity and heparin-releasable heart LPL activity, which were markedly reduced by CPM treatment. In rats given 15% glycerol/15% fructose solution, postheparin plasma LPL activity declined to two third of normal rats, whereas ginseng saponins reversed it to normal levels. In the present study we first demonstrated that ginseng saponins sustained LPL activity at a normal level or protected LPL activity from being decreased by several factors, resulting in the decrease of serum TG and cholesterol.  相似文献   

15.
S K Fried  M DiGirolamo 《Life sciences》1986,39(22):2111-2119
Lipoprotein lipase(LPL) release from isolated small fat cells from young rats and large fat cells from older, fatter rats was compared during in vitro incubation at 30 degrees C. Although large fat cells had nearly three times higher cellular LPL activity, they secreted similar amounts of LPL activity into the incubation medium under both basal conditions (Krebs Ringer bicarbonate buffer containing 4% albumin and 6mM glucose) and after stimulation of LPL release by 5% human serum, or serum plus 1 U/ml heparin. These data suggest that previous observations of an altered tissue distribution of LPL in adipose tissue containing large fat cells can be at least in part explained by an alteration at the level of LPL secretion.  相似文献   

16.
A neutral triacylglycerol lipase activity that is separate and distinct from lipoprotein lipase (LPL) could be measured in homogenates of myocardial cells if protamine sulphate and high concentrations of albumin were included in the assay. This neutral lipase was predominantly particulate, with the highest relative specific activity in microsomal subcellular fractions. The induction of diabetes by the administration of streptozotocin to rats resulted in a decrease in LPL activity in myocyte homogenates and in particulate subcellular fractions, but the percentage of cellular LPL activity that was released during incubation of myocytes with heparin was normal. In contrast, neutral lipase activity was increased in diabetic myocyte homogenates and microsomal fractions. Acid triacylglycerol lipase activity was not changed in diabetic myocytes. The decrease in LPL in myocytes owing to diabetes may result in the decreased functional LPL activity at the capillary endothelium of the diabetic heart.  相似文献   

17.
Incubation of isolated cardiac myocytes with 500 microM-8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) or 100 microM-forskolin for 2 1/2 h did not increase the heparin-induced release of lipoprotein lipase (LPL) into the medium. When LPL activity in cardiac myocytes was depleted by treatment of rats with cycloheximide (2 mg/kg; 2.5 h) and inclusion of the protein-synthesis inhibitor in the isolation solutions, incubation with CPT-cAMP or forskolin did not influence the rate of repletion of LPL activity in cells or the recovery of heparin-releasable LPL activity. Although the administration of cholera toxin (0.5 mg/kg; 16-17 h) to rats increased LPL activity in a low-speed supernatant fraction from heparin-perfused hearts, LPL activity was not increased in cardiac myocytes from cholera-toxin-treated rat hearts, and the heparin-induced release of LPL was unchanged. Incubation of cultured ventricular myocytes with 1 microgram of cholera toxin/ml or 500 microM-CPT-cAMP for 24 h did not increase cellular LPL activity or LPL released into the culture medium after a 40 min incubation with heparin. Therefore interventions that stimulate adenylate cyclase activity (forskolin, cholera toxin) or incubation with CPT-cAMP do not increase cellular LPL activity or promote the translocation of LPL to a heparin-releasable fraction in cardiac myocytes.  相似文献   

18.
When added to murine adipocytes in culture, tumor necrosis factor (TNF) decreases the levels of lipoprotein lipase (LPL). Semb et al (1987. J. Biol Chem. 262: 8390-8394) have shown that administration of murine TNF to rats decreases lipoprotein lipase (LPL) in the epididymal fat pad with maximal inhibition requiring several hours. We have now tested the effects of treatment of rats with TNF on LPL activity in a variety of tissues and find that few show decreases in LPL under conditions that acutely increase serum triglycerides. Ninety minutes after treatment of male rats with human TNF (25 micrograms/200 g, i.v.), serum triglycerides rose 2.2-fold but there was no decrease in LPL activity in epididymal fat. Sixteen hours after TNF treatment LPL activity had decreased by 44% in epididymal fat, consistent with the previously reported data. In contrast, in female rats, no significant decrease was seen in LPL activity in parametrial adipose tissue at either 90 min or 16 hr after TNF administration despite increases in serum triglycerides (1.8-fold and 1.5-fold, respectively). There was little change in LPL activity in most other adipose tissue sites of male or female rats at either time after TNF treatment. No effect of TNF was seen on heart or diaphragm muscle LPL at any time. TNF treatment of both male and female rats produces consistent increases in de novo hepatic lipogenesis in vivo under conditions that increase serum triglycerides. It is unlikely that the limited effects of TNF on LPL in vivo can account for the rapid and sustained increase in serum triglycerides.  相似文献   

19.
1. Lipoprotein lipase activity was measured in heart homogenates and in heparin-releasable and non-releasable fractions of isolated perfused rat hearts, after the intravenous injection of Triton WR-1339. 2. In homogenates of hearts from starved, rats, lipoprotein lipase activity was significantly inhibited (P less than 0.001) 2h after the injection of Triton. This inhibition was restricted exclusively to the heparin-releasable fraction. Maximum inhibition occurred 30 min after the injection and corresponded to about 60% of the lipoprotein lipase activity that could be released from the heart during 30 s perfusion with heparin. 3. Hearts of Triton-treated starved rats were unable to take up and utilize 14C-labelled chylomicron triacylglycerol fatty acids, even though about 40% of heparin-releasable activity remained in the hearts. 4. It is concluded that Triton selectively inhibits the functional lipoprotein lipase, i.e. the enzyme directly involved in the hydrolysis of circulating plasma triacylglycerols. 5. Lipoprotein lipase activities measured in homogenates of soleus muscle of starved rats and adipose tissue of fed rats were decreased by 25 and 39% respectively after Triton injection. It is concluded that, by analogy with the heart, these Triton-inhibitable activities correspond to the functional lipoprotein lipase.  相似文献   

20.
A gastric [U-14C]glucose load (4.8 mg/g body wt.) was delivered to unrestrained post-absorptive or 30 h-starved rats bearing peripheral and portal vein catheters and continuously perfused with [3-3H]glucose, in order to compare their metabolic and hormonal responses. In the basal state, portal and peripheral glycaemia were less in starved rats than in rats in the post-absorptive period (P less than 0.01), whereas blood lactate was similar. Portal insulinaemia (P less than 0.05) and protal glucagonaemia (P less than 0.005) were lower in starved rats, but insulin/glucagon ratio was higher in post-absorptive rats (P less than 0.005). The glucose turnover rate was decreased by starvation (P less than 0.005). After glucose ingestion, blood glucose was similar in post-absorptive and starved rats. A large portoperipheral gradient of lactate appeared in starved rats. Portal insulinaemia reached a peak at 9 min, and was respectively 454 +/- 68 and 740 +/- 65 mu-units/ml in starved and post-absorptive rats. Portal glucagonaemia remained stable, but was higher in post-absorptive rats (P less than 0.05). At 60 min after the gastric glucose load, 30% of the glucose was delivered at the periphery in both groups. The total glucose appearance rate was higher in starved rats (P less than 0.05), as was the glucose utilization rate (P less than 0.05), whereas the rate of appearance of exogenous glucose was similar. This was due to a non-suppressed hepatic glucose production in the starved rats, whereas it was totally suppressed in post-absorptive rats. At 1 h after the glucose load, the increase in both liver and muscle glycogen concentration was greater in starved rats. Thus short-term fasting induces an increased portal lactate concentration after a glucose load, and produces a state of liver insulin unresponsiveness for glucose production, whereas the sensitivity of peripheral tissues for glucose utilization is unchanged or even increased. This might allow preferential replenishment of the peripheral stores of glycogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号