首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro antibiotic susceptibility assay for Staphylococcus aureus biofilms developed on 96-well polystyrene tissue culture plates was performed to elucidate the activity of citropin 1.1, rifampin and minocycline. Efficacy studies were performed in a rat model of staphylococcal CVC infection. Silastic catheters were implanted into the superior cava. Twenty-four hours after implantation the catheters were filled with citropin 1.1 (10 microg/mL). Thirty minutes later the rats were challenged via the CVC with 1.0 x 10(6) CFU of S. aureus strain Smith diffuse. Administration of antibiotics into the CVC (the antibiotic lock technique) began 24 h later. The study included: one control group (no CVC infection), one contaminated group that did not receive any antibiotic prophylaxis, one contaminated group that received citropin 1.1-treated CVC, two contaminated groups that received citropin 1.1-treated CVC plus rifampin and minocycline at concentrations equal to MBCs for adherent cells and 1024 microg/mL in a volume of 0.1 mL that filled the CVC and two contaminated groups that received rifampin or minocycline at the same concentrations. All catheters were explanted 7 days after implantation. Main outcome measures were: minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), synergy studies, quantitative culture of the biofilm formed on the catheters and surrounding venous tissues, and quantitative peripheral blood cultures. MICs of conventional antibiotics against the bacteria in a biofilm were at least four-fold higher than against the freely growing planktonic cells. In contrast, when antibiotics were used on citropin 1.1 pre-treated cells they showed comparable activity against both biofilm and planktonic organisms. The in vivo studies show that when CVCs were pre-treated with citropin 1.1 or with a high dose of antibiotics, biofilm bacterial load was reduced from 10(7) to 10(3) CFU/mL and bacteremia reduced from 10(3) to 10(1) CFU/mL. When CVCs were treated both with citropin 1.1 and antibiotics, biofilm bacterial load was further reduced to 10(1) CFU/mL and bacteremia was not detected, suggesting 100% elimination of bacteremia and a log 6 reduction in biofilm load. Citropin 1.1 significantly reduces bacterial load and enhances the effect of hydrophobic antibiotics in the treatment of CVC-associated S. aureus infections.  相似文献   

2.
The increased viscosity observed in biofilms, adherent communities of bacterial cells embedded in a polymeric matrix, was hypothesized to induce increased tolerance of bacteria to antibiotics. To test this concept, planktonic Staphylococcus aureus cells were grown and exposed to vancomycin in media brought to specific viscosities in order to mimic the biofilm extracellular polymeric matrix. A viscous environment was observed to decrease the vancomycin susceptibility of planktonic S. aureus to levels seen for biofilms. Both planktonic S. aureus at a viscosity of 100 mPa s and staphylococcal biofilms were able to survive at >500 times the levels of the antibiotic effective against planktonic populations in standard medium. Time-dependent and dose-dependent viability curves revealed that more than one mechanism was involved in high S. aureus tolerance to vancomycin in viscous media. Increased viscosity affects antibiotic susceptibility by reducing diffusion and the mass transfer rate; this mechanism alone, however, cannot explain the increased tolerance demonstrated by S. aureus in viscous media, suggesting that viscosity may also alter the phenotype of the planktonic bacteria to one more resistant to antimicrobials, as seen in biofilms. However, these latter changes are not yet understood and will require further study.  相似文献   

3.
This study was designed to evaluate gene expression patterns of the planktonic and biofilm cells of Staphylococcus aureus and Salmonella Typhimurium in trypticase soy broth adjusted to pH 5.5 and pH 7.3. The planktonic and biofilm cells of multiple antibiotic-resistant S. aureus (S. aureus(R) ) and S. Typhimurium (S. Typhimurium(R) ) were more resistant to β-lactams than those of antibiotic-susceptible S. aureus (S. aureus(S) ) and S. Typhimurium (S. Typhimurium(S) ) at pH 5.5 and pH 7.3. The relative gene expression levels of norB, norC, and mdeA genes were increased by 7.0-, 4.7-, and 4.6-fold, respectively, in the biofilm cells of S. aureus(S) grown at pH 7.3, while norB, norC, mdeA, sec, seg, sei, sel, sem, sen, and seo genes were stable in the biofilm cells of S. aureus(R) . This study provides useful information for understanding gene expression patterns in the planktonic and biofilm cells of antibiotic-resistance pathogens exposed to acidic stress.  相似文献   

4.
Zhang L  Mah TF 《Journal of bacteriology》2008,190(13):4447-4452
Bacteria growing in biofilms are more resistant to antibiotics than their planktonic counterparts. How this transition occurs is unclear, but it is likely there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. We have identified a novel efflux pump in Pseudomonas aeruginosa that is important for biofilm-specific resistance to a subset of antibiotics. Complete deletion of the genes encoding this pump, PA1874 to PA1877 (PA1874-1877) genes, in an P. aeruginosa PA14 background results in an increase in sensitivity to tobramycin, gentamicin, and ciprofloxacin, specifically when this mutant strain is growing in a biofilm. This efflux pump is more highly expressed in biofilm cells than in planktonic cells, providing an explanation for why these genes are important for biofilm but not planktonic resistance to antibiotics. Furthermore, expression of these genes in planktonic cells increases their resistance to antibiotics. We have previously shown that ndvB is important for biofilm-specific resistance (T. F. Mah, B. Pitts, B. Pellock, G. C. Walker, P. S. Stewart, and G. A. O'Toole, Nature 426:306-310, 2003). Our discovery that combining the ndvB mutation with the PA1874-1877 gene deletion results in a mutant strain that is more sensitive to antibiotics than either single mutant strain suggests that ndvB and PA1874-1877 contribute to two different mechanisms of biofilm-specific resistance to antibiotics.  相似文献   

5.
Staphylococcus epidermidis has become a significant pathogen causing infections due to biofilm formation on surfaces of indwelling medical devices. Biofilm-associated bacteria exhibit enhanced resistance to many conventional antibiotics. It is therefore, important to design novel antimicrobial reagents targeting S. epidermidis biofilms. In a static chamber system, the bactericidal effect of two leading compounds active as YycG inhibitors was assessed on biofilm cells by confocal laser scanning microscopy combined with viability staining. In young biofilms (6-h-old), the two compounds killed the majority of the embedded cells at concentrations of 100 microM and 25 microM, respectively. In mature biofilms (24-h-old), one compound was still effectively killing biofilm cells, whereas the other compound mainly killed cells located at the bottom of the biofilm. In contrast, vancomycin was found to stimulate biofilm development at the MBC (8 microg mL(-1)). Even at a high concentration (128 microg mL(-1)), vancomycin exhibited poor killing on cells embedded in biofilms. The two compounds exhibited faster and more effective killing of S. epidermidis planktonic cells than vancomycin at the early stage of exposure (6 h). The data suggest that the new inhibitors can serve as potential agents against S. epidermidis biofilms when added alone or in concert with other antimicrobial agents.  相似文献   

6.
Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non‐mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose‐dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.  相似文献   

7.
Bacterial cells are mostly studied during planktonic growth although in their natural habitats they are often found in communities such as biofilms with dramatically different physiological properties. We have examined another type of community namely cellular aggregates observed in strains of the human pathogen Staphylococcus aureus. By laser-diffraction particle-size analysis (LDA) we show, for strains forming visible aggregates, that the aggregation starts already in the early exponential growth phase and proceeds until post-exponential phase where more than 90% of the population is part of the aggregate community. Similar to some types of biofilm, the structural component of S. aureus aggregates is the polysaccharide intercellular adhesin (PIA). Importantly, PIA production correlates with the level of aggregation whether altered through mutations or exposure to sub-inhibitory concentrations of selected antibiotics. While some properties of aggregates resemble those of biofilms including increased mutation frequency and survival during antibiotic treatment, aggregated cells displayed higher metabolic activity than planktonic cells or cells in biofilm. Thus, our data indicate that the properties of cells in aggregates differ in some aspects from those in biofilms. It is generally accepted that the biofilm life style protects pathogens against antibiotics and the hostile environment of the host. We speculate that in aggregate communities S. aureus increases its tolerance to hazardous environments and that the combination of a biofilm-like environment with mobility has substantial practical and clinical importance.  相似文献   

8.

Background

Coagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units. The virulence of these bacteria is mainly due to their ability to form biofilms on indwelling medical devices. Biofilm-related infections often fail to respond to antibiotic chemotherapy guided by conventional antibiotic susceptibility tests.

Methods

Coagulase-negative staphylococcal blood culture isolates were grown in different phases relevant to biofilm formation: planktonic cells at mid-log phase, planktonic cells at stationary phase, adherent monolayers and mature biofilms and their susceptibilities to conventional antibiotics were assessed. The effects of oxacillin, gentamicin, and vancomycin on preformed biofilms, at the highest achievable serum concentrations were examined. Epifluorescence microscopy and confocal laser scanning microscopy in combination with bacterial viability staining and polysaccharide staining were used to confirm the stimulatory effects of antibiotics on biofilms.

Results

Most coagulase-negative staphylococcal clinical isolates were resistant to penicillin G (100%), gentamicin (83.3%) and oxacillin (91.7%) and susceptible to vancomycin (100%), ciprofloxacin (100%), and rifampicin (79.2%). Bacteria grown as adherent monolayers showed similar susceptibilities to their planktonic counterparts at mid-log phase. Isolates in a biofilm growth mode were more resistant to antibiotics than both planktonic cultures at mid-log phase and adherent monolayers; however they were equally resistant or less resistant than planktonic cells at stationary phase. Moreover, for some cell-wall active antibiotics, concentrations higher than conventional MICs were required to prevent the establishment of planktonic cultures from biofilms. Finally, the biofilm-growth of two S. capitis isolates could be enhanced by oxacillin at the highest achievable serum concentration.

Conclusion

We conclude that the resistance of coagulase-negative staphylococci to multiple antibiotics initially remain similar when the bacteria shift from a planktonic growth mode into an early attached mode, then increase significantly as the adherent mode further develops. Furthermore, preformed biofilms of some CoNS are enhanced by oxacillin in a dose-dependent manner.  相似文献   

9.
Photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells by a phtotosensitizer, merocyanine 540 (MC 540), was investigated. For the planktonic experiments, MC 540 binding efficiency to bacterial cells was found to increase with both increasing MC 540 concentration and increasing incubation time, but the binding became saturated following 10 min of incubation. The antimicrobial activity was enhanced with an increasing light dose, but an increase in the light dose could not further improve the antimicrobial activity if the maximum excitation level attainable was less than the necessary minimum threshold level. Complete inactivation was achieved when the excitation level of MC 540 was somewhere above the threshold level. The relationship between antimicrobial activity and the excitation level of MC 540 revealed that the more MC 540 was excited, the more S. aureus cells were killed. For the biofilm experiments, the antimicrobial activity was enhanced with an increase in the light dose. No viable cells were detected when organisms were exposed to 15 mug of MC 540 per ml and a light dose of 600 J/cm2 or to 20 mug of MC 540 per ml and a light dose of 450 J/cm2. A quantitative analysis of MC 540 bound to biofilms was also performed, and the images from confocal laser scanning microscopy provided direct evidence that revealed the difference between the MC 540 remaining in the biofilms prior to irradiation and the MC 540 remaining in the biofilms after irradiation. The results of both the planktonic and biofilm experiments suggest that the antimicrobial activity of photodynamic inactivation of S. aureus is closely related to the excitation level of MC 540.  相似文献   

10.
This study compares Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to the selenium and tellurium oxyanions selenite (SeO3(2-)), tellurate (TeO4(2-)), and tellurite (TeO3(2-)). P. aeruginosa planktonic and biofilm cultures reduced the selenium and tellurium oxyanions to orange and black end-products (respectively) and were equally tolerant to killing by these metalloid compounds. S. aureus planktonic cell cultures processed these metalloid oxyanions in a similar way, but the corresponding biofilm cultures did not. S. aureus biofilms were approximately two and five times more susceptible to killing by tellurate and tellurite (respectively) than the corresponding planktonic cultures. Our data indicate that the means of reducing metalloid oxyanions may differ between the physiology displayed in biofilm and planktonic cultures of the same bacterial strain.  相似文献   

11.
The effects of zinc (as ZnCl2) on in vitro production of bovine embryos (IVMFC) and components of the procedure, that is in vitro oocyte maturation (IVM), fertilisation (IVF) and embryo development in culture (IVC), and the effect of added zinc on sperm motility were studied. Immature cumulus oocyte complexes (COCs) were aspirated from ovarian follicles (2-5 mm diameter) at slaughter, and matured, fertilised and cultured in chemically defined conditions. The presence of zinc (10, 100 or 1000 micrograms added per millilitre) throughout IVMFC inhibited fertilisation. After addition of 10 micrograms zinc per millilitre separately to media for IVM and IVF, fertilisation was inhibited only when zinc was present for IVM. When present for IVF, 80% of oocytes selected for IVM reached 2- to 4-cell stages by 46 h after insemination whereas 67% of control oocytes (inseminated without added zinc) cleaved. Higher zinc concentrations (100 and 1000 micrograms added per millilitre) for IVF inhibited fertilisation. Sperm motility was reduced with addition of 10 micrograms per millilitre of zinc for sperm preparation (i.e. capacitation interval). Addition of 1.0 microgram zinc per millilitre to media used through IVMFC, or to the IVC medium alone, resulted in inhibition of development after 2- to 4-cell stages. When added to IVM or to both IVM and IVF media 1.0 microgram/ml of zinc compromised development to the morula stage and beyond. Maturing bovine oocytes may be more sensitive to 1.0 microgram ml of zinc in vitro than in vivo because a concentration of 3.0 micrograms/ml has been reported for bovine follicular fluid. Fertilisation was not adversely affected by 10 micrograms/ml of zinc; however, higher concentrations were inhibitory.  相似文献   

12.
Biofilms are considered to be highly resistant to antimicrobial agents. Strictly speaking, this is not the case-biofilms do not grow in the presence of antimicrobials any better than do planktonic cells. Biofilms are indeed highly resistant to killing by bactericidal antimicrobials, compared to logarithmic-phase planktonic cells, and therefore exhibit tolerance. It is assumed that biofilms are also significantly more tolerant than stationary-phase planktonic cells. A detailed comparative examination of tolerance of biofilms versus stationary- and logarithmic-phase planktonic cells with four different antimicrobial agents was performed in this study. Carbenicillin appeared to be completely ineffective against both stationary-phase cells and biofilms. Killing by this beta-lactam antibiotic depends on rapid growth, and this result confirms the notion of slow-growing biofilms resembling the stationary state. Ofloxacin is a fluoroquinolone antibiotic that kills nongrowing cells, and biofilms and stationary-phase cells were comparably tolerant to this antibiotic. The majority of cells in both populations were eradicated at low levels of ofloxacin, leaving a fraction of essentially invulnerable persisters. The bulk of the population in both biofilm and stationary-phase cultures was tolerant to tobramycin. At very high tobramycin concentrations, a fraction of persister cells became apparent in stationary-phase culture. Stationary-phase cells were more tolerant to the biocide peracetic acid than were biofilms. In general, stationary-phase cells were somewhat more tolerant than biofilms in all of the cases examined. We concluded that, at least for Pseudomonas aeruginosa, one of the model organisms for biofilm studies, the notion that biofilms have greater resistance than do planktonic cells is unwarranted. We further suggest that tolerance to antibiotics in stationary-phase or biofilm cultures is largely dependent on the presence of persister cells.  相似文献   

13.
A medium (Brain Heart Infusion plus 10% human plasma) was developed, tested, and validated for growing Staphylococcus aureus biofilm in vitro. With this medium, S. aureus forms reproducible and robust biofilms in flow chambers under controlled shear flow and with increased viability recovery in static well plates.  相似文献   

14.
Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC’s, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.  相似文献   

15.
Antibacterial activity of 7 aminoglycoside antibiotics and combinations of tobramycin or gentamicin with carbenicillin was studied with respect to 33 clinical strains of Ps. aeruginosa. Tobramycin, sisomicin, gentamicin and amicacin showed high levels of antibacterial activity. Tobramycin and sisomicin were 3-4 and 2 times more effective than gentamicin. 100 per cent of the Ps. aeruginosa isolates was sensitive to tobramycin and amicacin. The number of the isolates sensitive to sisomicin and gentamicin amounted to 97 and 94 per cent respectively. The respective numbers for streptomycin and kanamycin were 32 and 11 per cent. No monomycin sensitive isolates were detected. Combination of tobramycin or gentamicin with carbenicillin increased the antibacterial activity of the aminoglycoside antibiotics by 2-16 times and that of carbenicillin by 2-32 times. The synergistic effect of gentamicin or tobramycin with carbenicilin was observed with respect to 50 and 58 per cent of the isolates respectively. No antagonistic effect was detected on the combined use of the antibiotics. The majority of the isolates (96 per cent) were sensitive to combinations of carbenicillin in a concentration of 50 micrograms/ml with tobramycin or gentamicin in concentrations of 0.15 or 0.3 micrograms/ml respectively.  相似文献   

16.
Due to high resistance, standard chemotherapy of biofilm-associated staphylococcal infections is ineffective and a number of alternative approaches to antimicrobial treatment have been proposed. Minimum inhibitory concentration (MIC) and biofilm inhibitory concentration (BIC) of oxacillin (Oxa), vancomycin (Van), linezolid (Lzd) and lysostaphin (Lss) as well as the possible synergistic effect of the antibiotics and lysostaphin were determined. The Lss susceptibility of Staphylococcus aureus planktonic and bio-film cultures varied and was strain-dependent. The synergistic effect of sub-BIC(Lss)+Oxa was observed for methicillin-sensitive S. aureus (MSSa) and methicillin-resistant S. aureus (MrSa), but not for heterogeneously vancomycin-resistant S. aureus (V(h)Sa) biofilm. Van with sub-BICL(Lss) was effective against M(s)Sa and MrSa biofilm, when applied in three subsequent doses. Only sub-BICL(Lss)+Lzd combination, given as three cycles therapy, was effective in disruption of all 3 (M(s)Sa, M(r)Sa, V(h)Sa) biofilms.  相似文献   

17.
Staphylococcus epidermidis is now amongst the most important pathogenic agents responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of farnesol, a natural sesquiterpenoid, on Staphylococcus epidermidis planktonic and biofilm cells. Farnesol displayed a significant inhibitory effect on planktonic cells. Small concentrations (100 μM) were sufficient to exhibit antibacterial effect on these cells. In biofilm cells the effect of farnesol was not so pronounced and it seems to be strongly dependent on the cells metabolic activity and amount of matrix. Interestingly, the effect of farnesol at 200 μM was similar to the effect of vancomycin at peak serum concentration either in planktonic or biofilm cells. Overall, the results indicate a potential antibacterial effect of farnesol against S. epidermidis, and therefore the possible action of this molecule on the prevention of S. epidermidis related infections.  相似文献   

18.
Bacterial biofilms are crucial to the pathogenesis of many important infections and are difficult to eradicate. Streptococcus suis is an important pathogen of pigs, and here the biofilm-forming ability of 32 strains of this species was determined. Significant biofilms were completely formed by 10 of the strains after 60 h of incubation, with exopolysaccharide production in the biofilm significantly higher than that in the corresponding planktonic cultures. S. suis strain SS2-4 formed a dense biofilm, as revealed by scanning electron microscopy, and in this state exhibited increased resistance to a number of antibiotics (ampicillin, amoxicillin, ciprofloxacin, kanamycin, and rifampin) compared to that of planktonic cultures. A bacteriophage lysin, designated LySMP, was used to attack biofilms alone and in combination with antibiotics and bacteriophage. The results demonstrated that the biofilms formed by S. suis, especially strains SS2-4 and SS2-H, could be dispersed by LySMP and with >80% removal compared to a biofilm reduction by treatment with either antibiotics or bacteriophage alone of less than 20%; in addition to disruption of the biofilm structure, the S. suis cells themselves were inactivated by LySMP. The efficacy of LySMP was not dose dependent, and in combination with antibiotics, it acted synergistically to maximize dispersal of the S. suis biofilm and inactivate the released cells. These data suggest that bacteriophage lysin could form part of an effective strategy to treat S. suis infections and represents a new class of antibiofilm agents.  相似文献   

19.
Although tumor necrosis factor-alpha (TNF-alpha) is an important host factor against intracellular bacteria, little is known about the effect of TNF-alpha on the persistence of intracellular Staphylococcus aureus in vascular endothelial cells. It was investigated whether recombinant human TNF-alpha influences the survival of intracellular S. aureus (ATCC 29213) in human umbilical vein endothelial cells (HUVEC) under a condition with an antistaphylococcal agent, and its mechanism. The HUVECs were incubated with TNF-alpha, oxacillin, or both in 24-well plates for up to 48 h following internalization of S. aureus (10(6) CFU well(-1)) into HUVECs for 1 h. TNF-alpha (1 ng mL(-1)) significantly reduced the number of intracellular S. aureus in HUVECs, and TNF-alpha plus oxacillin eliminated more intracellular S. aureus in HUVEC than oxacillin alone. The LDH viability assay and quantification of apoptosis using photometric enzyme-immunoassay showed that TNF-alpha preferentially induced cell death and apoptosis of HUVECs infected with S. aureus compared with noninfected HUVECs. These results indicate that TNF-alpha helps antistaphylococcal antibiotics to eliminate intracellular S. aureus in vascular endothelial cells, partly because TNF-alpha preferentially induces apoptosis of endothelial cells infected by S. aureus.  相似文献   

20.

Background

High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates.

Methodology

Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium.Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy.

Principal Findings

A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms.High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号