首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of evoked potentials requires suitable consideration of physiological and pathophysiological characteristics of spontaneous and evoked electrical activity of the brain. For this purpose a preprocessing strategy based on adaptive recursive estimation of statistical parameters was developed. In this way, artifact handling, classification, filtering and further preprocessing of spontaneous EEG and evoked potentials can be improved.  相似文献   

2.
In France, beginning with 1946, the method of Ivanov-Smolenski was used to study schizophrenia, but after 1957, sensory conditioning procedures have been employed (EEG sound-light, evoked potentials in children, SAE conditioning in adults) and more recently eye blink and operant conditioning.  相似文献   

3.
Research on the effects of self-regulation of slow potentials (SP) and event-related potentials (ERP) has failed to look at the possible interactions of these two kinds of brain potentials. The present study investigated such interactions by recording both ERP and SP potential changes in an operant ERP conditioning paradigm. Ten subjects participated in two conditions that were designed to differentially manipulate attention to the stimuli. In the operant conditioning task, subjects received auditory feedback as they attempted to increase the ERP amplitude at 180 msec poststimulus (P180), which was elicited by a subpainful shock stimulus to the forearm over 250 trials. In the distraction task, subjects were instructed not to attend to stimuli or feedback tones, but rather received and were tested on reading materials. Attention, as manipulated by these tasks, was not a determinant of changes in ERP amplitude since there were no significant differences in the size of P180 between attention conditions. While no significant change in the mean ERP amplitude occurred, subjects were able to produce ERPs above criterion threshold significantly more often during trials in the conditioning task than in the reading task. Thus, there was evidence of some learning. The difference in wave forms between hit and miss trials indicates a latency shift (with misses having a later ERP peak). This may indicate that latency, rather than, or in addition to, amplitude, is shaped during conditioning procedures. In addition, the CNV that developed between the shock stimulus and the feedback signal during conditioning was significantly larger in amplitude than in the distraction condition. This is taken as evidence of increased attention during conditioning. Since hit trials demonstrated larger contingent negative variation (CNV) amplitudes, production of CNVs may be instrumental in mediating hits. Therefore, attentional mechanisms may play a role in successful ERP self-regulation. No correlations were found involving P180, CNVs, or tonic slow potential shifts. Changes in tonic DC levels showed a suggestive trend between conditions. Although both conditions began with a negative shift, during conditioning the negativity increased, while during distraction the tonic level went to positivity. These trends support the hypothesis that attention and arousal increased during conditioning. The possible reasons for the lack of significant correlations between ERP and tonic or phasic slow potential changes in this paradigm are discussed.  相似文献   

4.
Experiments on alert non-immobilized rabbits revealed that electrical cutaneous stimulation of a limb, used as a reinforcing agent in elaboration of a conditioned reflex to photic flashes, weakened slow polyrhythmic oscillations of background EEG and late components of evoked potentials in the visual cortex to photic flashes. Against this background, the connection between slow potentials and spike activity in both the visual and sensorimotor cortical areas considerably diminished. During EEG activation, induced by the reinforcing stimulus, inhibitory pauses and post-inhibitory activation in the firing of the neocortical units weakened and protracted, ordered spike activity appeared. The data obtained are in agreement with the hypothesis that weakening of the recurrent inhibition system is one of the basic mechanisms in the action of the reinforcing stimulus in conditioning.  相似文献   

5.
Research on the effects of self-regulation of slow potentials (SP) and event-related potentials (ERP) has failed to look at the possible interactions of these two kinds of brain potentials. The present study investigated such interactions by recording both ERP and SP potential changes in an operant ERP conditioning paradigm. Ten subjects participated in two conditions that were designed to differentially manipulate attention to the stimuli. In the operant conditioning task, subjects received auditory feedback as they attempted to increase the ERP amplitude at 180 msec poststimulus (P180), which was elicited by a subpainful shock stimulus to the forearm over 250 trials. In the distraction task, subjects were instructed not to attend to stimuli or feedback tones, but rather received and were tested on reading materials. Attention, as manipulated by these tasks, was not a determinant of changes in ERP amplitude since there were no significant differences in the size of P180 between attention conditions. While no significant change in the mean ERP amplitude occurred, subjects were able to produce ERPs above criterion threshold significantly more often during trials in the conditioning task than in the reading task. Thus, there was evidence of some learning. The difference in wave forms between hit and miss trials indicates a latency shift (with misses having a later ERP peak). This may indicate that latency, rather than, or in addition to, amplitude, is shaped during conditioning procedures. In addition, the CNV that developed between the shock stimulus and the feedback signal during conditioning was significantly larger in amplitude than in the distraction condition. This is taken as evidence of increased attention during conditioning. Since hit trials demonstrated larger contingent negative variation (CNV) amplitudes, production of CNVs may be instrumental in mediating hits. Therefore, attentional mechanisms may play a role in successful ERP self-regulation. No correlations were found involving P180, CNVs, or tonic slow potential shifts. Changes in tonic DC levels showed a suggestive trend between conditions. Although both conditions began with a negative shift, during conditioning the negativity increased, while during distraction the tonic level went to positivity. These trends support the hypothesis that attention and arousal increased during conditioning. The possible reasons for the lack of significant correlations between ERP and tonic or phasic slow potential changes in this paradigm are discussedThis research was partially supported by NICHD Grant HD 15327 to R. Karrer, NIH Grant DE05204 to J. P. Rosenfeld, and the Office of Social Science Research at University of Illinois at Chicago. Appreciation is extended to G. Dombrowski for his assistance in data analysis.  相似文献   

6.

Background

The Contact Heat Evoked Potential Stimulator (CHEPS) utilises rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Aδ and C fibres. The resulting evoked potentials can be recorded and measured, providing a useful clinical tool for the study of thermal and nociceptive pathways. Concurrent recording of contact heat evoked potentials using electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has not previously been reported with CHEPS. Developing simultaneous EEG and fMRI with CHEPS is highly desirable, as it provides an opportunity to exploit the high temporal resolution of EEG and the high spatial resolution of fMRI to study the reaction of the human brain to thermal and nociceptive stimuli.

Methods

In this study we have recorded evoked potentials stimulated by 51°C contact heat pulses from CHEPS using EEG, under normal conditions (baseline), and during continuous and simultaneous acquisition of fMRI images in ten healthy volunteers, during two sessions. The pain evoked by CHEPS was recorded on a Visual Analogue Scale (VAS).

Results

Analysis of EEG data revealed that the latencies and amplitudes of evoked potentials recorded during continuous fMRI did not differ significantly from baseline recordings. fMRI results were consistent with previous thermal pain studies, and showed Blood Oxygen Level Dependent (BOLD) changes in the insula, post-central gyrus, supplementary motor area (SMA), middle cingulate cortex and pre-central gyrus. There was a significant positive correlation between the evoked potential amplitude (EEG) and the psychophysical perception of pain on the VAS.

Conclusion

The results of this study demonstrate the feasibility of recording contact heat evoked potentials with EEG during continuous and simultaneous fMRI. The combined use of the two methods can lead to identification of distinct patterns of brain activity indicative of pain and pro-nociceptive sensitisation in healthy subjects and chronic pain patients. Further studies are required for the technique to progress as a useful tool in clinical trials of novel analgesics.  相似文献   

7.
This study evaluated the effects of two different types of segmental/extra-segmental conditioning stimuli (tonic muscle pain and non-painful vibration) on the subjective experience (perceived pain intensity) and on the cortical evoked potentials to standardized test stimuli (cutaneous electrical stimuli). Twelve subjects participated in two separate sessions to investigate the effects of tonic muscle pain or cutaneous vibration on experimental test stimuli. The experimental protocol contained a baseline registration (test stimuli only), a registration with the test stimuli in combination with the conditioning stimuli, followed by a registration with the test stimuli only. In addition, the effects of the conditioning stimuli were examined at two anatomically separated locations (segmental and extra-segmental). Compared with the test stimulus alone, the perceived pain intensity and peak-to-peak amplitudes of the evoked potentials were unchanged in the presence of non-painful conditioning stimuli at either location. In contrast, a significant decrease of the perceived pain intensity and peak-to-peak amplitudes was found in the presence of painful conditioning stimuli at the extra-segmental sites. Moreover, the topographic maps of the 32-channel recordings suggested that the distribution of the scalp evoked potentials was almost symmetrical around the vertex Cz in the baseline registration. The evoked potentials were generally decreased during hypertonic saline infusion at the extra-segmental sites, but the distribution of the topographic maps did not appear to change. Vibration has previously been shown to inhibit pain, but in the present study the perceived intensity of phasic painful electrical stimuli was unchanged. The reduced perceived pain intensity and the smaller peak-to-peak amplitude of the evoked potential in the presence of extra-segmental conditioning pain are in accordance with the concept of diffuse noxious inhibitory control.  相似文献   

8.
Antennal movements of the honey bee can be conditioned operantly under laboratory conditions. Using this behavioural paradigm we have developed a preparation in which the activity of a single antennal muscle has been operantly conditioned. This muscle, the fast flagellum flexor muscle, is innervated by an identified motoneuron whose action potentials correlate 1:1 with the muscle potentials. The activity of the fast flagellum flexor muscle was recorded extracellularly from the scapus of the antenna. The animal was rewarded with a drop of sucrose solution whenever the muscle activity exceeded a defined reward threshold. The reward threshold was one standard deviation above the mean spontaneous frequency prior to conditioning. After ten conditioning trials, the frequency of the muscle potentials had increased significantly compared to the spontaneous frequency. The conditioned changes of frequency were observed for 30 min after conditioning. No significant changes of the frequency were found in the yoke control group. The firing pattern of the muscle potentials did not change significantly after conditioning or feeding. Fixing the antennal joints reduces or abolishes associative operant conditioning. The conditioned changes of the frequency of muscle potentials in the freely moving antenna are directly comparable to the behavioural changes during operant conditioning. Accepted: 29 March 2000  相似文献   

9.
Pavlovian to Instrumental Transfer (PIT) refers to the behavioral phenomenon of increased instrumental responding for a reinforcer when in the presence of Pavlovian conditioned stimuli that were separately paired with that reinforcer. PIT effects may play an important role in substance use disorders, but little is known about the brain mechanisms that underlie these effects in alcohol consumers. We report behavioral and electroencephalographic (EEG) data from a group of social drinkers (n = 31) who performed a PIT task in which they chose between two instrumental responses in pursuit of beer and chocolate reinforcers while their EEG reactivity to beer, chocolate and neutral pictorial cues was recorded. We examined two markers of the motivational salience of the pictures: the P300 and slow wave event-related potentials (ERPs). Results demonstrated a behavioral PIT effect: responding for beer was increased when a beer picture was presented. Analyses of ERP amplitudes demonstrated significantly larger slow potentials evoked by beer cues at various electrode clusters. Contrary to hypotheses, there were no significant correlations between behavioral PIT effects, electrophysiological reactivity to the cues, and individual differences in drinking behaviour. Our findings are the first to demonstrate a PIT effect for beer, accompanied by increased slow potentials in response to beer cues, in social drinkers. The lack of relationship between behavioral and EEG measures, and between these measures and individual differences in drinking behaviour may be attributed to methodological features of the PIT task and to characteristics of our sample.  相似文献   

10.
In unrestrained adult rats evoked potentials were recorded by implanted electrodes in the somatosensory cortex in response to electrical stimulation of the pulp of an upper incisor. The spontaneous EEG, motor activity of the animal, and its respiratory movements were recorded simultaneously. Significant differences were observed in the configuration of the potentials and mean amplitude of the primary complex (P1+N1) during states of slow sleep, drowsiness, relaxed wakefulness, grooming, and investigative behavior; the amplitude of the primary complex during marked motor activity was reduced by more than an order of magnitude compared with that observed in a state of motor rest.In a state of relaxed wakefulness negative correlation was recorded between the amplitude of evoked potentials and momentary values of the respiration rate, weaker during periods of intensive motor activity. Meanwhile no direct parallel was observed between changes in potentials and respiration rate over the whole range of behavioral states studied: Depression of potentials was maximal during grooming whereas the respiration rate was maximal during investigative behavior.Paul Flechsig Institute for Brain Research, Karl Marx University, Leipzig, East Germany. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 27–35, January–February, 1985.  相似文献   

11.
Already in the 1930s Skinner, Konorskiand colleagues debated the commonalities, differences and interactions among the processes underlying what was then known as “conditioned reflexes type I and II”, but which is today more well-known as classical (Pavlovian) and operant (instrumental) conditioning. Subsequent decades of research have confirmed that the interactions between the various learning systems engaged during operant conditioning are complex and difficult to disentangle. Today, modern neurobiological tools allow us to dissect the biological processes underlying operant conditioning and study their interactions. These processes include initiating spontaneous behavioral variability, world-learning and self-learning. The data suggest that behavioral variability is generated actively by the brain, rather than as a by-product of a complex, noisy input-output system. The function of this variability, in part, is to detect how the environment responds to such actions. World-learning denotes the biological process by which value is assigned to environmental stimuli. Self-learning is the biological process which assigns value to a specific action or movement. In an operant learning situation using visual stimuli for flies, world-learning inhibits self-learning via a prominent neuropil region, the mushroom-bodies. Only extended training can overcome this inhibition and lead to habit formation by engaging the self-learning mechanism. Self-learning transforms spontaneous, flexible actions into stereotyped, habitual responses.  相似文献   

12.
痛觉诱发电位的研究进展   总被引:4,自引:0,他引:4  
Qi YW  Luo F 《生理科学进展》2004,35(1):19-24
痛觉诱发电位的研究在过去的几十年内取得了重要进展 ,出现了许多用于被试的诱发明确疼痛感的刺激技术 ,并与诱发电位方法学联合应用 ,已经成为脑映像学研究中重要的组成部分。本文从刺激技术、痛觉诱发电位成分分析和偶极子源分析等方面出发 ,讨论了痛觉诱发电位的研究进展  相似文献   

13.
Electrical activity of the tracheal smooth muscle was studied using extracellular bipolar electrodes in 37 decerebrate, paralyzed, and mechanically ventilated dogs. A spontaneous oscillatory potential that consisted of a slow sinusoidal wave of 0.57 +/- 0.13 (SD) Hz mean frequency but lacked a fast spike component was recorded from 15 dogs. Lung collapse accomplished by bilateral pneumothoraxes evoked or augmented the slow potentials that were associated with an increase in tracheal muscle contraction in 26 dogs. This suggests that the inputs from the airway mechanoreceptors reflexly activate the tracheal smooth muscle cells. Bilateral vagal transection abolished both the spontaneous and the reflexly evoked slow waves and provided relaxation of the tracheal smooth muscle. Electrical stimulation of the distal nerve with a train pulse (0.5 ms, 1-30 Hz) evoked slow-wave oscillatory potentials accompanied by a contraction of the tracheal smooth muscle in all the experimental animals. Our observations in this in vivo study confirm that the electrical activity of tracheal smooth muscle consists of slow oscillatory potentials and that tracheal contraction is at least partly coupled to the slow-wave activity of the smooth muscle.  相似文献   

14.
The common marmoset (Callithrix jacchus) is a small New World primate that has increasingly been used as a non-human model in the fields of sensory, motor, and cognitive neuroscience. However, little knowledge exists regarding behavioral methods in this species. Developing an understanding of the neural basis of perception and cognition in an animal model requires measurement of both brain activity and behavior. Here we describe an operant conditioning behavioral training method developed to allow controlled psychoacoustic measurements in marmosets. We demonstrate that marmosets can be trained to consistently perform a Go/No-Go auditory task in which a subject licks at a feeding tube when it detects a sound. Correct responses result in delivery of a food reward. Crucially, this operant conditioning task generates little body movement and is well suited for pairing behavior with single-unit electrophysiology. Successful implementation of an operant conditioning behavior opens the door to a wide range of new studies in the field of auditory neuroscience using the marmoset as a model system.  相似文献   

15.
The electrical activity of the rabbit brain at different stages of hunger and satiation was correlated with the animal's behavioral reactions. It has been found that alimentary reactions are attended with the appearance of complex high-amplitude and high-frequency electrical potentials in the lateral hypothalamic area, which increased with the longer duration of the animal's hunger, as well as during search, in response to natural and conditioned alimentary stimuli, and when feeding. As satiation sets in, they fade and disappear after food refusal. It is assumed that this form of activity is an EEG expression of alimentary motivational excitation. Its constituent rhythms reflect the different components of alimentary excitation.  相似文献   

16.
This study is carried out on single (not averaged) recordings combining the spontaneous activity preceding the stimulus onset and the EP recorded upon acoustical stimulation. These recordings, which we call EEG-EPograms, are measured simultaneously from different subdural structures, such as the auditory cortex, medial geniculate nucleus, inferior colliculus, reticular formation and the hippocampus of the cat brain during the slow wave sleep stage. Using a combined analysis procedure (C.A.P.), the relevant frequency components of spontaneous EEG and EPs, recorded simultaneously from these brain nuclei, are analyzed according to the consistent selectivity bands depicted by the determined amplitude-frequency characteristics for the SWS-stage. In parallel with the results which we obtained for the waking stage, these analyses provide also the following information: (1) there is an important congruency in the time courses of simultaneous response components in common frequency bands, especially in the alpha and beta frequency ranges; (2) there exist significant coupling and synchrony between the evoked amplitude enhancements in the simultaneously recorded single response components; (3) the inter-nuclei coherency in the brain's electrical activity is enormously increased upon stimulation; (4) the evoked response magnitude can be predicted, with reasonable accuracy, from the spontaneous activity preceding the stimulus. All these findings are discussed with reference to those obtained for the waking stage.This study is supported by the Grant TAG-364 of the Scientific and Technical Research Council of Turkey  相似文献   

17.
Evoked potentials are the transient electrical responses caused by changes in the brain following stimuli. This work uses a physiology-based continuum model of neuronal activity in the human brain to calculate theoretical cortical auditory evoked potentials (CAEPs) from the model’s linearized response. These are fitted to experimental data, allowing the fitted parameters to be related to brain physiology. This approach yields excellent fits to CAEP data, which can then be compared to fits of EEG spectra. It is shown that the differences between resting eyes-open EEG and standard CAEPs can be explained by changes in the physiology of populations of neurons in corticothalamic pathways, with notable similarities to certain aspects of slow-wave sleep. This pilot study demonstrates the ability of our model-based fitting method to provide information on the underlying physiology of the brain that is not available using standard methods.  相似文献   

18.
In order to study systemic brain reactions on transcranial electrical or electromagnetic medical stimulation and specify the neurophysiological criteria of its efficiency, comparative clinical and experimental examination was performed with the analysis of spontaneous bioelectric activity and behavioral or clinical parameters. We examined 6 patients with prolonged posttraumatic unconsciousness states treated with electrical stimulation and 17 intact Wistar rats subjected to electromagnetic stimulation of the brain. The effect of the transcranial stimulation was shown to depend on the initial level of the intercentral interactions of brain bioelectrical activity, estimated by the EEG coherence. Hypersynchronization of biopotentials as the main element of the brain reactivity can be the most useful for the rehabilitation of patients with cerebral pathology in cases of initially lowered level of the intercentral interactions in the absence of pathologically strengthened functional connections.  相似文献   

19.
Changes in seizure activity of the brain evoked by electrical stimulation of the dorsal hippocampus in various stages of sleep and wakefulness were studied in adult cats. During slow sleep, when the EEG is dominated by high-voltage slow waves, near-threshold epileptogenic hippocampal stimulation evokes well-marked paroxysmal discharges. During wakefulness or the paradoxical phase of sleep, when the EEG is desynchronized, this hippocampal stimulation is less effective: either no seizure discharges are produced or they are weak. Activation of the mesencephalic reticular formation before epileptogenic hippocampal stimulation hinders the appearance of seizure activity whereas activation after hippocampal stimulation does not inhibit paroxysmal discharges already in progress; on the contrary, in some cases they are actually strengthened a little. One of the main factors limiting the appearance and spread of seizure activity is considered to be the tonic inhibitory influence of the neocortex on other parts of the brain.  相似文献   

20.
 Evoked potentials – the brain's transient electrical responses to discrete stimuli – are modeled as impulse responses using a continuum model of brain electrical activity. Previous models of ongoing brain activity are refined by adding an improved model of thalamic connectivity and modulation, and by allowing for two populations of excitatory cortical neurons distinguished by their axonal ranges. Evoked potentials are shown to be modelable as an impulse response that is a sum of component responses. The component occurring about 100 ms poststimulus is attributed to sensory activation, and this, together with positive and negative feedback pathways between the cortex and thalamus, results in subsequent peaks and troughs that semiquantitatively reproduce those of observed evoked potentials. Modulation of the strengths of positive and negative feedback, in ways consistent with psychological theories of attentional focus, results in d istinct responses resembling those seen in experiments involving attentional changes. The modeled impulse responses reproduce key features of typical experimental evoked response potentials: timing, relative amplitude, and number of peaks. The same model, with further modulation of feedback, also reproduces experimental spectra. Together, these results mean that a broad range of ongoing and transient electrocortical activity can be understood within a common framework, which is parameterized by values that are directly related to physiological and anatomical quantities. Received: 22 May 2001 / Accepted in revised form: 8 January 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号