首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. 1) Purification of the photoactive particle corresponding tophotosystem II (particle II) was achieved using a combinationof procedures including digitonin- and Triton X-100-treatments,sonication, and differential- and density-gradient centrifugations.
  2. 2) The "purified" particle II preparation showed only oxygenevolution activity and showed no NADP+ photoreduction activityeven when an electron donor couple was added.
  3. 3) The chemicalcompositions of this particle and of the particlecorrespondingto photosystem I (particle I) were compared withrespect tothe composition and contents of their chlorophylls,carotenoids,cytochromes, plastoquinones, protein and lipid.Marked differenceswere found.
  4. 4) Using the two photoactive particles I and IIlacking therespective counterpart activity, a partial successwas attainedin reconstituting a system, in which photoinducedelectron flowfrom water to NADP+ was observed, provided thatsuitable intermediateelectron carriers, e. g. plastoquinoneand plastocyanin, wereadded.
  5. 5) The nature of the two photoactiveparticles obtained andtheir relationship to particles so farreported are discussed.
1This study was aided by grants from the Ministry of Education(407160-1965, 91402-1966, 1967). Financial support from SanyoBroadcasting Scientific Foundation is also acknowledged withcordial thanks. (Received October 23, 1968; )  相似文献   

2.
  1. 1. Light-induced changes in the fluorescence transient (685nm) of spinach chloroplast fragments at room temperature wereinvestigated in an attempt to correlate these changes with photoinactivationin photosystem II.
  2. 2. Parallel decreases in the steady-statelevel of fluorescenceand in the variable fraction, observedunder aerobic light-treatment,were not related processes butseparate reactions as indicatedby an anaerobic-interruptionexperiment where the decrease inthe steady-state level occurredonly after the disappearanceof induction.
  3. 3. Anaerobic light-treatmentcaused an increase in the initiallevel of fluorescence parallelto photoinactivation in photosystemII, and a more rapid partialdecrease in the teady-state levelof fluorescence.
  4. 4. Thesteady-state level of fluorescence showed pronouncedpH dependency,and had an optimum at about pH 6.5, while theinitial levelwas practically independent of environmental pHwithin a neutralrange. Aerobic or anaerobic light-treatmentcompletely eliminatedpH dependency.
  5. 5. Effects of electron acceptors, dichlorophenyl-dimethylurea,dithionite, and of electron donors for photosystem II on thefluorescence transient of photoinactivatedchloroplast fragmentswere investigated. Based on the data presented here, it seemsreasonable to assume that photoinactivation in photosystem IIis closely related to the state of reaction centers in the photosystem.
(Received July 8, 1970; )  相似文献   

3.
(1) To analyze the photoelectron flow related to photosystemII, particle II preparation, i.e., the chloroplast fragmenthaving only photosystem II activity, proved to be far betterthan the generally used chloroplast preparations having activitiesof both PS-I and PS-II. (2) By simultaneous measurements ofthe activities of O2 evolution and DPIP- and ferricyanide photoreductionusing variously-treated particle II preparations, it was foundthat a noticeable activity of ferricyanide photoreduction wasstill observed, though the former two activities were completelylost in the course of treatments such as Tris-treatment, pre-illuminationand aging. (3) Besides this, differences were found betweenferricyanide- and DPIP-photoreduction in respect to susceptibilityto CCCP, availability of artificial electron donor, and theeffect of chloride addition. However, both photo-reductionswere equally inactivated by heat-treatment and addition of DCMU.(4) To explain the observed distinctions between DPIP and ferricyanidein their mode of action as electron acceptor for PS-II, a schemesuggesting the involvement of two light reactions in PS-II isproposed and the electron flow near PS-II is discussed. 1 This work has been supported by Grants from the Ministry ofEducation (Nos. 8425- 70-'71; 4970l4-'69-'71), which are gratefullyacknowledged here. (Received January 12, 1972; )  相似文献   

4.
  1. The effect of preincubating spinach chloroplasts with ferricyanideon the time courses of chlorophyll- fluorescence in the presenceof 3-(3,4-dichlorophyl)-1,1-dimethylurea (DCMU) was studied.When DCMU was absent from the preincubation mixture, but wasadded just before the onset of excitation light, preincubationof chloroplasts with ferricyanide markedly affected the fluorescencekinetics. The rise-rate was lowered and consequently the areaabove the induction curve (S/Fv), which is proportional to thepool size of the electron acceptor(s) for photosystem 2, increased.The maximum increase in the S/Fv was attained after 3 min and10 min, respectively, of preincubation with 5?10–4M and3?10–5M ferricyanide.
  2. When DCMU was present during preincubationwith ferricyanide,the effect of ferricyanide in increasingthe S/Fv, was completelyeliminated.
  3. The effect of ferricyanidewas also suppressed by addition offerrocyanide to the preincubationmixture. The redox potentialof the ferri-ferrocyanide mixturewhich produced 50% suppressionof the ferricyanide effect wasabout 360 mV.
  4. A similar dependency of the ferricyanide effecton the redoxpotential was observed in Tris-treated chloroplasts.However,the redox potential of cytochrome b-559 was markedlyloweredby Tris-treatment.
  5. These results were explained byassuming the occurrence of asecondary electron acceptor, R,between the reaction centerof photosystem 2 and the DCMU-sensitivesite.
(Received February 27, 1973; )  相似文献   

5.
Thylakoids isolated from the cyanobacterium Anabaenacylindrica exhibit Photosystem II activity. Photosynthetic electron transfer from water to ferricyanide and to 2,6-dichlorophenolindophenol is inhibited by 3-(3,4-dichlorophenyl)-N-N′-dimethyl urea. Diphenylcarbazide stimulates ferricyanide and 2,6-dichlorphenolindophenol photoreduction, whilst inhibiting oxygen evolution. Diphenylcarbazide-supported Photosystem II activity is completely insensitive to 3-(3,4-dichlorophenyl)-N-N′-dimethyl urea, indicating that the site of action of this inhibitor lies on the donor side of Photosystem II in A.cylindrica, before the site of electron donation by diphenylcarbazide.  相似文献   

6.
The photoreduction of silicomolybdate and other heteropoly ions by chloroplasts is insensitive to 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU). Both water and diphenylcarbazide can be used as electron source for the reduction. Three different assays for silicomolybdate reduction are described including oxygen evolution, formation of a reduced heteropoly blue silicomolybdate, or an indirect assay for reduced silicomolybdate by redox indicators, such as ferricyanide or cytochrome c. The effects of detergents and tris washing are consistent with silicomolybdate reduction through photosystem II before the DCMU site. The effects of orthophenanthroline and bathophenanthroline indicate chelator-sensitive sites in photosystem II before the site of DCMU action.  相似文献   

7.
J. Whitmarsh  W.A. Cramer 《BBA》1977,460(2):280-289
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e. hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100±10 ms, compared to 6–10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t12 = 25–35 ms. The addition of uncouplers, which caused a stimulatory effect on ferricyanide reduction under the same experimental conditions, resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

8.
The consequences of chloroplast ageing in vitro were furtherinvestigated, especially on the photochemical activities ofthese organelles. Ageing of chloroplasts in dark was accompanied by decreasesin activities for photohydrolysis and cyclic and non-cyclicsyntheses of ATP, photoreduction of NADP+ and O2 evolution;but there was no decrease in ferricyanide photoreduction. Therates of decrease in these activities were comparable to therate of increase in chloroplast volume. Complete inhibitionswere reached when maximum chloroplast swelling had occurred,i.e. after 5 to 6 hr of incubation at 20?C in a Tris-NaCl (pH8) medium. Ageing in the light resulted in much accelerateddecreases in activities tested; the loss of capacity for light-inducedshrinkage was also accelerated by the light during ageing. Thus,light acts synergetically towards the ageing process. Moreover,light and, to a less extent, dark ageing, resulted in an uncouplingof chloroplast photophosphorylation and associated electronflow measured by ferricyanide photoreduction. The part of theelectron flow which is induced by coupling (+ ADP, Pi, MgCl2,pH 8) or by uncoupling (+ NH4C1, pH 7) was found to be verysensitive to light ageing. The NADP+ photoreduction loss wasrestored by addition of the ascorbate-DCPIP electron donor system,suggesting that ageing interferes with the integrity of photosystemII. In many respects, these effects of ageing are comparable withthe action of detergents and fatty acids on the structure andphotochemical activities of chloroplasts, especially in thatthey attack the energy transducing mechanism in chloroplasts. (Received May 24, 1969; )  相似文献   

9.
Spectral methods were used to study the sequences of chlorophyll biosynthesis reactions in etiolated pea, bean, and maize plants in early stages (3-4 days) of growth. For these juvenile plants, along with the reaction chain known for mature (7-9 day-old) plants, a new reaction chain was found which started with phototransformation of the long-wavelength form PChld 686/676 into PChld 653/648. (PChld 653/648 differs from the main known precursor form PChld 655/650). The subsequent photoreduction of PChld 653/648 leads to the formation of Chld 684/676, which is transformed into Chl 688/680 in the course of a dark reaction. After completion of this reaction, fast (20-30 sec) quenching of the fluorescence of the reaction product is observed with the formation of non-fluorescent Chl 680. The reaction accompanied by pigment fluorescence quenching is absent in pea mutants with depressed function of Photosystem II reaction centers. This suggests that the newly found reaction chain leads to the formation of chlorophyll of the Photosystem II reaction center.  相似文献   

10.
J. Whitmarsh  W.A. Cramer 《BBA》1978,501(1):83-93
Cytochrome b-559, which is normally reduced in the dark, was oxidized by preillumination in the presence of N-methyl-phenazonium methosulfate with low intensity far-red light. The average half-time for the photoreduction of oxidized cytochrome b-559 by a long actinic flash ranged from 90 to 110 ms. In the presence of 0.25 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea the half-time for the photoreduction increased to 230 ms although the extent of the absorbance increase was unchanged. Under similar conditions inhibition of electron transport by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the increase in the chlorophyll fluorescence show that a large fraction of the Photosystem II reaction centers are blocked. These results are consistent with the concept that electrons are shared between different photosynthetic units by a common pool of plastoquinone and imply that the principle pathway for the reduction of cytochrome b-559 by Photosystem II occurs through plastoquinone. In the presence of the uncoupler gramicidin which stimulates non-cyclic electron transport, the rate of photoreduction of cytochrome b-559 is slower (t12 = 180 ms), from which it is inferred that cytochrome b-559 competes with cytochrome f for electrons out of this pool. Comparison of cytochrome b-559 photoreduction and electron transport rates using untreated and KCN-treated chloroplasts indicate that, under conditions of basal electron transport from water to ferricyanide, approximately one-fifth of the electrons from Photosystem II go through cytochrome b-559 to ferricyanide. Further support for this pathway is provided by a comparison of the effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (dibromothymoquinone) on the rates of reduction of cytochrome b-559 and ferricyanide.  相似文献   

11.
Detailed absorbance difference spectra are reported for the Photosystem II acceptor Q, the secondary donor Z, and the donor involved in photosynthetic oxygen evolution which we call M. The spectra of Z and Q could be resolved by analysis of flash-induced kinetics of prompt and delayed fluorescence, EPR signal IIf and absorbance changes in Tris-washed system II preparations in the presence of ferricyanide and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). The spectrum of Z oxidation consists mainly of positive bands at 260, 300 and 390–450 nm on which a chlorophyll a band shift around 438 nm is superimposed, and is largely pH-independent as is also the case for the spectrum of Q reduction. The re-reduction of Z+ occurred in the millisecond time range, and could be explained by a competition between back reaction with Q? (120 ms at pH 6.0) and reduction by ferrocyanide. When the Tris treatment is omitted the preparations evolve oxygen, and the photoreduction of Q (with DCMU present) is accompanied by the oxidation of M. The Q spectrum being known, the spectrum of the oxidation of M could be determined as well. It consists of a broad, asymmetric increase peaking near 305 nm and of a Chl a band shift, which is about the same as that accompanying Z in Tris-washed system II. Comparison with spectra of model compounds suggests that Z is a bound plastoquinol which is oxidized to the semiquinone cation and that the oxidation of M is an Mn(III) → Mn(IV) transition.  相似文献   

12.
The pH dependence of the photoreduction of ferricyanide and the photoreduction of NADP from water and photosystem I activity have been compared in isolated chloroplasts from mesophyll and bundle sheath cells of Zea mays. The maximum activity of photoreduction of ferricyanide occurs at pH 8.5 in isolated mesophyll chloroplasts. The addition of methylamine does not cause a marked shift in the pH maximum, but brief sonication lowers the pH maximum to 7.0. In contrast, isolated bundle sheath chloroplasts have a pH maximum at 7.0 and the shape of the pH versus activity curve is similar to that of sonicated mesophyll chloroplasts. When photoreduction of ferricyanide by the isolated chloroplasts is measured at their pH maxima, the values for bundle sheath chloroplasts are about half those of methylamine-treated mesophyll chloroplasts on a chlorophyll basis.  相似文献   

13.
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e, hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100 +/- 10 ms, compared to 6-10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t 1/2 = 25-35 ms. The addition of uncouplers, which caused stimulatory effect on ferricyanide reduction under the same experimental conditions resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

14.
Dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) is reputed to be a plastoquinone antagonist which prevents the photoreduction of hydrophilic oxidants such as ferredoxin-NADP+. However, we have found that dibromothymoquinone inhibits only a small part of the photoreduction of lipophilic oxidants such as oxidized p-phenylenediamine. Dibromothymoquinone-resistant photoreduction reactions are coupled to phosphorylation, about 0.4 molecules of ATP consistently being formed for every pair of electrons transported. Dibromothymoquinone itself is a lipophilic oxidant which can be photoreduced by chloroplasts, then reoxidized by ferricyanide or oxygen. The electron transport thus catalysed also supports phosphorylation and the Pe2 ratio is again 0.4. It is concluded that there is a site of phosphorylation before the dibromothymoquinone block and another site of phosphorylation after the block. The former site must be associated with electron transfer reactions near Photosystem II, while the latter site is presumably associated with the transfer of electrons from plastoquinone to cytochrome f.  相似文献   

15.
Chang SB  Vedvick TS 《Plant physiology》1968,43(10):1661-1665
Plastoquinone-9 (PQ-9) was isolated from the chloroplasts of Euglena gracilis Strain Z and spinach. The functional involvement and the structural specificity of PQ-9 in photochemical reactions was investigated in the isolated chloroplasts of Euglena gracilis. It was found that PQ-9 was required for both photoreduction of ferricyanide and photosynthetic phosphorylation in Euglena chloroplasts. The structural integrity of PQ-9 was not required to the same degree in the 2 photochemical reactions. Photosynthetic phosphorylation seemed to require the entire molecular structure of PQ-9 for the activity, whereas shortening in isoprenoid chain and modification of quinoid nucleus of PQ-9 do not seem to alter the photoreduction activity significantly. Addition of PQ-9 to the lyophilized Euglena chloroplasts inhibited the photoreduction of ferricyanide significantly, while it stimulated photosynthetic phosphorylation activity.  相似文献   

16.
《BBA》1985,808(1):192-200
The stoichiometry of chlorophyll/Photosystem II was determined in pea thylakoids. The concentration of Photosystem II was determined by the absorption change at 325 nm. When the 325 nm measurement was made on the first flash in the presence of ferricyanide, the Photosystem II absorption change was found to increase by up to 100% of the same measurement made in the absence of ferricyanide. The increase in absorption change in the presence of various amounts of ferricyanide was found to correlate well with the increase in area above the Chl a fluorescence induction curve. Also, the dark recovery of both the 325 nm absorption change and the area above the Chl a fluorescence curve are similar and in the order of several minutes. Absorption changes made under repetitive flash excitation showed no increase in signal with the addition of ferricyanide. We conclude that there are two acceptors, Qa and Q400, for each active oxygen-evolving complex and only Qa is involved in active electron transport to Photosystem I.  相似文献   

17.
  1. Based on the microscopic observations, two stages, "giant cellstage" and the subsequent "palmelloid body stage", were distinguishedin the process of formation of giant Chlorella induced by theaddition of sugars. The "giant cell" is much larger in sizethan the control cell, but the other morphological featuresare the same as those of the latter. The "palmelloid body" isa form composed of many conjoined autospores.
  2. When a highconcentration of glucose was maintained in the medium,gigantismwas also maintained. Under this condition, the algashows acyclic transformation between "giant cell" and "palmelloidbody"without returning to the small single cells.
  3. Large amountsof carbohydrate composed of hexose were foundto be accumulatedin the giant algal cells, and it was inferredthat this carbohydrateaccumulation causes greater enlargementof cell volume as comparedwith control cells.
  4. Uronic acids, which were found to be absentin the control cells,were formed and lost in the cells culturedin the glucose mediumin parallel with the appearance and disappearanceof gigantism.
  5. Pectic substances, from which uronic acids areconsidered tobe derived during the extraction procedure, werefound to bepresent only in giant Chlorella.
  6. The conjoinedautospores in giant Chlorella (at the palmelloidbody stage)were separated to some extent by the addition ofEDTA, and theresulting cells were similar to control Chlorellacells.
  7. Basedon these results it was inferred that inductive formationofthe pectic substances is causally related with the appearanceof "palmelloid body".
1 Present address: Department of Chemistry, College of GeneralEducation, Osaka University, Toyonaka, Osaka.  相似文献   

18.
Effect of High Cation Concentrations on Photosystem II Activities   总被引:2,自引:2,他引:0  
Baker NR 《Plant physiology》1978,62(6):889-893
The effects of wide concentration ranges of NaCl, KCl, and MgCl2 on ferricyanide reduction and the fluorescence induction curve of isolated spinach (Spinacia oleracea) chloroplasts were investigated. Concentrations of the monovalent salts above 100 mm and MgCl2 above 25 mm produced a decrease in the rate of ferricyanide reduction by thylakoids uncoupled with 2.5 mm NH4Cl which cannot be attributed to changes in the primary photochemical capacity of photosystem II. Salt-induced decreases in the effective concentration of the secondary electron acceptor of photosystem II, plastoquinone, reduce the capacity for secondary photochemistry of photosystem II and this could contribute to the reduction in ferricyanide reduction by uncoupled thylakoids at high salinities. The rate of ferricyanide reduction by coupled thylakoids is little affected by salinity changes, indicating that the rate-limiting phosphorylation mechanism in electron flow from water to ferricyanide in coupled thylakoids is salt-tolerant, whereas the rate-limiting reaction in uncoupled ferricyanide reduction is considerably affected by salinity changes. Salt-induced changes in the fluorescence induction curve are interpreted in terms of changes in the rate constants for excitation decay by radiationless transitions, exciton transfer from photosystem II chlorophylls to other associated chlorophyll species, and photochemistry.  相似文献   

19.
The mechanism of phosphate permeation in purified bean mitochondria   总被引:1,自引:0,他引:1  
The permeability properties and mechanism of Pi transport wereinvestigated in purified bean mitochondria.
  1. Purified bean mitochondria are impermeable to small moleculesand ions. However, Pi, arsenate, acetate and formate can enterthe osmotically active space of bean mitochondria.
  2. Nigericinor the association of valinomycin and FCCP cause mitochondrialswelling in isoosmotic potassium phosphate.
  3. The SH-blockingreagents mersalyl, pHMB and NEM inhibit variousmitochondrialfunctions dependent on the translocation of Piand arsenateacross the membrane. These include the respirationstimulatedby ADP, Ca2++Pi, and K++valinomycin +Pi; the swellingin ammoniumphosphate medium and, in the presence of nigericin,in potassiumphosphate medium; the energy-linked yalinomycin-inducedswellingand the subsequent CICCP-induced shrinking. The uncoupler-stimulatedrespiration, as well as the other processes when acetate issubstituted for Pi, are not influenced by SH reagents.
  4. Mersalyland pHMB cause complete inhibition at about 20 nmoles/mgprotein,whereas, NEM is effective at about 1 µmole/mgprotein.The inhibition by mersalyl and pHMB, but not that byNEM, issigmoidal and reversed by 2-mercaptoethanol. Non-inhibitoryamounts of mersalyl protect the Pi transport from irreversibleinhibition by NEM.
  5. We concluded that a carrier-mediated transportsystem for Piis present in bean mitochondria, and that someof its propertiesare similar to the Pi carrier of animal mitochondria.
(Received June 5, 1975; )  相似文献   

20.
The possibility of a Photosystem II (PS II) cyclic electron flow via Cyt b-559 catalyzed by carbonylcyanide m-chlorophenylhydrazone (CCCP) was further examined by studying the effects of the PS II electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ) on the light-induced changes of the redox states of Cyt b-559. Addition to barley thylakoids of micromolar concentrations of DCBQ completely inhibited the changes of the absorbance difference corresponding to the photoreduction of Cyt b-559 observed either in the presence of 10 M ferricyanide or after Cyt b-559 photooxidation in the presence of 2 M CCCP. In CCCP-treated thylakoids, the concentration of photooxidized Cyt b-559 decreased as the irradiance of actinic light increased from 2 to 80 W m-2 but remained close to the maximal concentration (0.53 photooxidized Cyt b-559 per photoactive Photosystem II) in the presence of 50 M DCBQ. The stimulation of Cyt b-559 photooxidation in parallel with the inhibition of its photoreduction caused by DCBQ demonstrate that the extent of the light-induced changes of the redox state of Cyt b-559 in the presence of CCCP is determined by the difference between the rates of photooxidation and photoreduction of Cyt b-559 occuring simultaneously in a cyclic electron flow around PS II.We also observed that the Photosystem I electron acceptor methyl viologen (MV) at a concentration of 1 mM barely affected the rate and extent of the light-induced redox changes of Cyt b-559 in the presence of either FeCN or CCCP. Under similar experimental conditions, MV strongly quenched Chl-a fluorescence, suggesting that Cyt b-559 is reduced directly on the reducing side of Photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - ANT-2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - CCCP carbonylcyanide-m-chlorophenylhydrazone - DCBQ 2,6-dichloro-p-benzoquinone - FeCN ferricyanide - MV methyl viologen - P680 Photosystem II reaction center Chl-a dimer CIW-DPB publication No. 1118.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号