首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ocean quahog, Arctica islandica is not just the longest living bivalve, it is also the longest lived, non-colonial animal known to science. With the maximum life span potential ever increasing and currently standing in excess of 400 years the clam has recently gained interest as a potential model organism for ageing research. This review details what is known about the biology of A. islandica, it discusses observed age-associated changes and reviews previous ageing research undertaken on the species and other long-lived bivalves which may be applicable to future ageing research and discusses future directions for ageing research with A. islandica. Historically much of the research on bivalves has been targeted at their utilization as a food source, environmental sentinels and more recently the use of their shells as archives of environmental change. The result of this has been an abundance of knowledge on bivalve life strategies, and a limited amount of information on the physiological changes in the cells and tissues of bivalves during the ageing process. However, research into the mechanisms of senescence of long-lived bivalves from a biogerontological perspective has advanced only recently. The research undertaken thus far has documented age-related differences in anti-oxidant defences and accumulation of oxidative products but despite the recent attention into ageing of A. islandica it is still to be ascertained if the species experiences senescence. Future directions for ageing research using A. islandica are discussed.  相似文献   

2.
Early‐life conditions can have long‐lasting effects and organisms that experience a poor start in life are often expected to age at a faster rate. Alternatively, individuals raised in high‐quality environments can overinvest in early‐reproduction resulting in rapid ageing. Here we use a long‐term experimental manipulation of early‐life conditions in a natural population of collared flycatchers (Ficedula albicollis), to show that females raised in a low‐competition environment (artificially reduced broods) have higher early‐life reproduction but lower late‐life reproduction than females raised in high‐competition environment (artificially increased broods). Reproductive success of high‐competition females peaked in late‐life, when low‐competition females were already in steep reproductive decline and suffered from a higher mortality rate. Our results demonstrate that ‘silver‐spoon’ natal conditions increase female early‐life performance at the cost of faster reproductive ageing and increased late‐life mortality. These findings demonstrate experimentally that natal environment shapes individual variation in reproductive and actuarial ageing in nature.  相似文献   

3.
衰老是任何生物都无法避免的生理现象,它由多种因素引起,其过程极其复杂.酵母细胞是目前衰老研究领域公认的模式生物,一系列影响衰老的分子作用机理及调控因素的发现均源自于对酵母细胞的研究.自然衰老是酵母细胞的衰老模式之一,由于该衰老过程与其他高等真核细胞(特别是哺乳动物细胞)极为相似,近年来受到广泛关注.全面比较酵母细胞衰老的两种模式,详细介绍自然衰老过程中分子作用机理的研究进展,重点阐述其复杂的自然寿命调控通路,包括卡路里限制以及药物添加对Ras/PKA、Sch9、Tor等营养依赖型调控通路的影响,并展望未来该领域需要解决的重要科学问题,为全面深入了解高等生物,特别是人类自身的衰老机理提供参考.  相似文献   

4.
Sleep fragmentation, particularly reduced and interrupted night sleep, impairs the quality of life of older people. Strikingly similar declines in sleep quality are seen during ageing in laboratory animals, including the fruit fly Drosophila. We investigated whether reduced activity of the nutrient- and stress-sensing insulin/insulin-like growth factor (IIS)/TOR signalling network, which ameliorates ageing in diverse organisms, could rescue the sleep fragmentation of ageing Drosophila. Lowered IIS/TOR network activity improved sleep quality, with increased night sleep and day activity and reduced sleep fragmentation. Reduced TOR activity, even when started for the first time late in life, improved sleep quality. The effects of reduced IIS/TOR network activity on day and night phenotypes were mediated through distinct mechanisms: Day activity was induced by adipokinetic hormone, dFOXO, and enhanced octopaminergic signalling. In contrast, night sleep duration and consolidation were dependent on reduced S6K and dopaminergic signalling. Our findings highlight the importance of different IIS/TOR components as potential therapeutic targets for pharmacological treatment of age-related sleep fragmentation in humans.  相似文献   

5.
Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity.  相似文献   

6.
To provide a foundation for the development of effective interventions to counteract various age-related diseases in humans, ageing processes have been extensively studied in various model organisms and systems. However, the mechanisms underlying ageing are still not unravelled in detail in any system including rather simple organisms. In this article, we review some of the molecular mechanisms that were found to affect ageing in two fungal models, the unicellular ascomycete Saccharomyces cerevisiae and the filamentous ascomycete Podospora anserina. A selection of issues like retrograde response, genomic instability, caloric restriction, mtDNA reorganisation and apoptosis is presented and discussed with special emphasis on the role reactive oxygen species (ROS) play in these diverse molecular pathways.  相似文献   

7.
Ageing is a strong independent risk factor for disability, morbidity and mortality. Post‐mitotic cells including those in the heart are a particular risk to age‐related deterioration. As the occurrence of heart disease is increasing rapidly with an ageing population, knowledge regarding the mechanisms of age‐related cardiac susceptibility and possible therapeutic interventions needs to be acquired to prevent advancing levels of heart disease. To understand more about the ageing heart, numerous aged animal models are being used to explore the underlying mechanisms. Due to time‐consuming for investigations involving naturally aged animals, mimetic ageing models are being utilized to assess the related effects of ageing on disease occurrence. d ‐galactose is one of the substances used to instigate ageing in various models, and techniques involving this have been widely used since 1991. However, the mechanism through which d ‐galactose induces ageing in the heart remains unclear. The aim of this review was to comprehensively summarize the current findings from in vitro and in vivo studies on the effects of d ‐galactose‐induced ageing on the heart, and possible therapeutic interventions against ageing heart models. From this review, we hope to provide invaluable information for future studies and based on the findings from experiments involving animals, we can inform possible therapeutic strategies for the prevention of age‐related heart diseases in clinical settings.  相似文献   

8.
Within‐population variation in ageing remains poorly understood. In males, condition‐dependent investment in secondary sexual traits may incur costs that limit ability to invest in somatic maintenance. Moreover, males often express morphological and behavioral secondary sexual traits simultaneously, but the relative effects on ageing of investment in these traits remain unclear. We investigated the condition dependence of male life history in the neriid fly Telostylinus angusticollis. Using a fully factorial design, we manipulated male early‐life condition by varying nutrient content of the larval diet and, subsequently, manipulated opportunity for adult males to interact with rival males. We found that high‐condition males developed more quickly and reached their reproductive peak earlier in life, but also experienced faster reproductive ageing and died sooner than low‐condition males. By contrast, interactions with rival males reduced male lifespan but did not affect male reproductive ageing. High‐condition in early life is therefore associated with rapid ageing in T. angusticollis males, even in the absence of damaging male–male interactions. Our results show that abundant resources during the juvenile phase are used to expedite growth and development and enhance early‐life reproductive performance at the expense of late‐life performance and survival, demonstrating a clear link between male condition and ageing.  相似文献   

9.
Understanding the links between developmental patterning mechanisms and force-producing cytoskeletal mechanisms is a central goal in studies of morphogenesis. Gastrulation is the first morphogenetic event in the development of many organisms. Gastrulation involves the internalization of surface cells, often driven by the contraction of actomyosin networks that are deployed with spatial precision—both in specific cells and in a polarized manner within each cell. These cytoskeletal mechanisms rely on different cell fate and cell polarity regulators in different organisms. Caenorhabditis elegans gastrulation presents an opportunity to examine the extent to which diverse mechanisms may be used by dozens of cells that are internalized at distinct times within a single organism. We identified 66 cells that are internalized in C. elegans gastrulation, many of which were not known previously to gastrulate. To gain mechanistic insights into how these cells internalize, we genetically manipulated cell fate, cell polarity and cytoskeletal regulators and determined the effects on cell internalization. We found that cells of distinct lineages depend on common actomyosin-based mechanisms to gastrulate, but different cell fate regulators, and, surprisingly, different cell polarity regulators. We conclude that diverse cell fate and cell polarity regulators control common mechanisms of morphogenesis in C. elegans. The results highlight the variety of developmental patterning mechanisms that can be associated with common cytoskeletal mechanisms in the morphogenesis of an animal embryo.  相似文献   

10.
According to life history theory, physiological and ecological traits and parameters influence an individual''s life history and thus, ultimately, its lifespan. Mating and reproduction are costly activities, and in a variety of model organisms, a negative correlation of longevity and reproductive effort has been demonstrated. We are employing the annual killifish Nothobranchius furzeri as a vertebrate model for ageing. N. furzeri is the vertebrate displaying the shortest known lifespan in captivity with particular strains living only three to four months under optimal laboratory conditions. The animals show explosive growth, early sexual maturation and age-dependent physiological and behavioural decline. Here, we have used N. furzeri to investigate a potential reproduction-longevity trade-off in both sexes by means of gender separation. Though female reproductive effort and offspring investment were significantly reduced after separation, as investigated by analysis of clutch size, eggs in the ovaries and ovary mass, the energetic surplus was not reallocated towards somatic maintenance. In fact, a significant extension of lifespan could not be observed in either sex. This is despite the fact that separated females, but not males, grew significantly larger and heavier than the respective controls. Therefore, it remains elusive whether lifespan of an annual species evolved in periodically vanishing habitats can be prolonged on the cost of reproduction at all.  相似文献   

11.
Libusová L  Dráber P 《Protoplasma》2006,227(2-4):65-76
Summary. Tetrahymena and Paramecium species are widely used representatives of the phylum Ciliata. Ciliates are particularly suitable model organisms for studying the functional heterogeneity of tubulins, since they provide a wide range of different microtubular structures in a single cell. Sequencing projects of the genomes of members of these two genera are in progress. Nearly all members of the tubulin superfamily (α-, β-, γ-, δ-, ɛ-, η-, θ-, ι-, and κ-tubulins) have been identified in Paramecium tetraurelia. In Tetrahymena spp., the functional consequences of different posttranslational tubulin modifications (acetylation, tyrosination and detyrosination, phosphorylation, glutamylation, and glycylation) have been studied by different approaches. These model organisms provide the opportunity to determine the function of tubulins found in ciliates, as well as in humans, but absent in some other model organisms. They also give us an opportunity to explore the mechanisms underlying microtubule diversity. Here we review current knowledge concerning the diversity of microtubular structures, tubulin genes, and posttranslational modifications in Tetrahymena and Paramecium species. Correspondence and reprints: Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.  相似文献   

12.
We describe a novel extension of the Genomic Matching Technique (GMT) that defines haplotypes of the mannose binding lectin (MBL) region in Zebrafish (D. rerio). Four ancestral haplotypes have been identified to date, with at least one of these demonstrating a significant increase in resistance to L. anguillarum. MBL activates the lectin pathway of the complement system and stimulates the development of the complement cascade and the Membrane Attack Complex. Polymorphisms in humans have been associated with increased susceptibility and severity to a number of pathogenic organisms. As teleosts have a relatively immature acquired immune system, polymorphisms within MBL and other innate defence genes are likely to be critical in defining their susceptibility/resistance to various pathogenic organisms. We report multiple copies of MBL-like genes in D. rerio, with up to three copies tightly linked within a cluster spanning ∼15 kb on chromosome 2. Genomic analysis suggests that duplication, retroviral insertion and possibly gene mutation and/or deletion have been key factors in the evolution of this cluster. Molecular analysis has revealed extensive polymorphism, including at least five distinct amplicons and haplospecific gene copy number variation. This study demonstrates polymorphism within a critical component of the teleost innate immune system. The polymorphisms and the haplotypes encoding the unique variants are likely to be informative in defining susceptibility/resistance to infectious agents commonly encountered within aquatic environments. Future investigations will define other important haplotypes and transfer the knowledge to other finfish species, thereby enabling selection of broodstock for the aquaculture industry. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Hydra is a classical model to study key features of embryogenesis such as axial patterning and stem cell differentiation. In contrast to other organisms where these mechanisms are active only during embryonic development, in Hydra they can be studied in adults. The underlying assumption is that the machinery governing adult patterning mimics regulatory mechanisms which are also active during early embryogenesis. Whether, however, Hydra embryogenesis is governed by the same mechanisms which are controlling adult patterning, remains to be shown. In this paper, in precisely staged Hydra embryos, we examined the expression pattern of 15 regulatory genes shown previously to play a role in adult patterning and cell differentiation. RT-PCR revealed that most of the genes examined were expressed in rather late embryonic stages. In situ hybridization, nuclear run-on experiments, and staining of nucleolar organizer region-associated proteins indicated that genes expressed in early embryos are transcribed in the engulfed "nurse cells" (endocytes). This is the first direct evidence that endocytes in Hydra not only provide nutrients to the developing oocyte but also produce maternal factors critical for embryogenesis. Our findings are an initial step towards understanding the molecular machinery controlling embryogenesis of a key group of basal metazoans and raise the possibility that in Hydra there are differences in the mechanisms controlling embryogenesis and adult patterning.Edited by D. Tautz  相似文献   

14.
The use of mysid shrimp, particularly the genusMysidopsis, along with specific testing procedures, has become accepted in aquatic toxicology. Investigators have developed methodologies for both culture and testing of these organisms. Acute and chronic (life cycle) toxicity tests in addition to dredge spoil and effluent tests with mysids are now becoming common. Attempts have been made to use mysids as test organisms in behavioral, physiological, nutritional, and food-chain studies. In general,Mysidopsis spp. have been shown to be as sensitive or more sensitive to toxic substances than other marine species tested. The ease of handling and culture, relative sensitivity to toxicants, short life cycle, small size and direct larval development make these organisms desirable for research purposes. Continued research using mysid species will probably demonstrate even greater usefulness of these organisms in assessment of pollutant impacts on estuarine or marine communities.  相似文献   

15.
16.
In this paper the method of life span extension of multicellular organisms (human) using reservation of stem cells followed by autotransplantation has been proposed. As the efficiency of this method results from the information theory of ageing, it is important to verify it experimentally testing the basic concepts of the theory. Taking it into consideration, the experiment on bone marrow transplantation to old mice from young closely related donors of the inbred line was carried out. It has been shown that transplanted animals exhibited a survival advantage, a mean life span increased by 34% as compared to the control. This result not only demonstrates the efficiency of the proposed method for life span extension of multicellular organisms, but also confirms the basis of the information theory of ageing.  相似文献   

17.
Rotifers have been used to study the mechanisms of ageing for more than a century, but the underlying molecular basis of ageing in rotifers is largely unknown. The insulin/insulin-like growth factor (IGF-1) signaling pathway has been found to regulate the lifespan of evolutionarily distinct eukaryotes from yeast to mammals. We therefore assume that the insulin/IGF-1 pathway is a candidate for regulating the rotifer’s lifespan. Accordingly, we examined the action of an inhibitor to PI3-kinase involved in the pathway for the rotifer Brachionus plicatilis O. F. Müller. This kinase was first discovered as age-1 to regulate the longevity of Caenorhabditis elegans. As expected, the inhibitor treatment resulted in the extension of lifespan by 30% compared to the reference group without the treatment, whereas reproductive characters were not apparently changed. These results were consistent with those observed in C. elegans, suggesting that the lifespan of B. plicatilis is likely to be regulated by the signaling pathway involving PI3-kinase.  相似文献   

18.

Background  

Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes.  相似文献   

19.
Ageing is a complex phenomenon which remains a major challenge to modern biology. Although the evolutionary biology of ageing is well understood, the mechanisms that limit lifespan are unknown. The isolation and analysis of single-gene mutations which extend lifespan (Age mutations) is likely to reveal processes which influence ageing. Caenorhabditis elegans is the only metazoan in which Age mutations have been identified. The Age mutations not only prolong life, but also confer a complex array of other phenotypes. Some of these phenotypes provide clues to the evolutionary origins of these genes while others allude to mechanisms of lifespan-extension. Many of the Age genes interact and share a second common phenotype, that of stress resistance. Rather than invertebrate ageing being determined by a ‘clock mechanism’, a picture is emerging of ageing as a non-adaptive process determined, in part, by resistance to intrinsic stress mediated by stress-response genes.  相似文献   

20.
Iwona Wojda 《Insect Science》2017,24(3):342-357
Investigation of insect immune mechanisms provides important information concerning innate immunity, which in many aspects is conserved in animals. This is one of the reasons why insects serve as model organisms to study virulence mechanisms of human pathogens. From the evolutionary point of view, we also learn a lot about host–pathogen interaction and adaptation of organisms to conditions of life. Additionally, insect‐derived antibacterial and antifungal peptides and proteins are considered for their potential to be applied as alternatives to antibiotics. While Drosophila melanogaster is used to study the genetic aspect of insect immunity, Galleria mellonella serves as a good model for biochemical research. Given the size of the insect, it is possible to obtain easily hemolymph and other tissues as a source of many immune‐relevant polypeptides. This review article summarizes our knowledge concerning G. mellonella immunity. The best‐characterized immune‐related proteins and peptides are recalled and their short characteristic is given. Some other proteins identified at the mRNA level are also mentioned. The infectious routes used by Galleria natural pathogens such as Bacillus thuringiensis and Beauveria bassiana are also described in the context of host–pathogen interaction. Finally, the plasticity of G. mellonella immune response influenced by abiotic and biotic factors is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号