首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently presented evidence that distinct morphine and enkephalin receptors coexist in an opioid receptor complex (Mol. Pharmacol. 21:548-557, 1982). In this paper, we present data which demonstrate that in the presence of sodium leucine enkephalin noncompetitively inhibits the binding of [3H]naloxone to a crude particulate fraction of rat brain. Since the binding site labeled by [3H]naloxone in the presence of sodium may be an alternate conformation of the morphine receptor, these data provide further evidence that morphine and enkephalin receptors are allosterically coupled.  相似文献   

2.
Interaction of naloxone with the opioid receptor complex in vitro   总被引:2,自引:2,他引:0  
Previous work from this laboratory suggests that distinct morphine and enkephalin receptors coexist in an opioid receptor complex. In this paper the interaction of naloxone with the receptor complex is studied. The results further strengthens the hypothesis that leucine enkephalin binds poorly to the morphine receptor and that morphine and enkephalin receptors are allosterically coupled.  相似文献   

3.
Based on non-competitive binding interactions we suggested that mu and delta receptors associate as a mu/delta receptor complex in rat brain. We hypothesized that the same non-competitive binding interactions observed in rat brain will be seen in CHO cells that co-express mu and delta receptors, but not in cells that express just mu or delta receptors. We used CHO cells expressing the cloned human mu receptor, cloned human delta receptor, or cloned mouse delta/human mu ("dimer cell"). Cell membranes were prepared from intact cells pretreated with 100nM SUPERFIT. [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding assays followed published procedures. SUPERFIT, a delta-selective irreversible ligand, decreased [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to delta receptors by approximately 75% and to mu receptors by approximately 50% in dimer cells. SUPERFIT treatment did not decrease [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to mu cells. The IC(50) values observed in SUPERFIT-treated dimer cells were: [d-Pen(2),d-Pen(5)]enkephalin (1820nM) and morphine (171nM). Saturation binding experiments with SUPERFIT-treated dimer cells showed that [d-Pen(2),d-Pen(5)]enkephalin (5000nM) was a competitive inhibitor. In contrast, morphine (1000nM) lowered the B(max) from 1944fmol/mg to 1276fmol/mg protein (35% decrease). Both [d-Pen(2),d-Pen(5)]enkephalin and morphine competitively inhibited [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to SUPERFIT-treated mu cells. The results indicate that the mu-delta opioid receptor complex defined on the basis of non-competitive binding interactions in rat brain over 20 years ago likely occurs as a consequence of the formation of mu-delta heterodimers. SUPERFIT-treated dimer cells may provide a useful model to study the properties of mu-delta heterodimers.  相似文献   

4.
The experiments reported in this paper address the hypothesis that [3H]leucine enkephalin labels both mu and delta receptors. As reported by other workers, this peptide dissociates from rat brain membranes in a biphasic manner. This is consistent with a two site binding model which hypothesizes that the peptide labels both opioid mu and delta receptors from which it dissociates at different rates. To test this hypothesis, we determined the dissociation of bound ligand from rat brain membranes incubated to equilibrium with [3H]leucine enkephalin in the absence and presence of 100 nM morphine. The data were not significantly different. We conclude that the biphasic off-kinetics of [3H]leucine enkephalin is not evidence for a two-site binding model.  相似文献   

5.
Studies conducted after the development of the rapid filtration assay for opiate receptors, and before the recognition of multiple opioid receptors, failed to detect changes in opioid receptors induced by chronic morphine. Recent experiments conducted in our laboratories were designed to examine the hypothesis that only one of several opioid receptor types might be altered by chronic morphine. Using binding surface analysis and irreversible ligands to increase the "resolving power" of the ligand binding assay, the results indicated that chronic morphine increased both the Bmax and Kd of the opioid receptor complex, labeled with either [3H][D-Ala2,D-Leu5]enkephalin, [3H][D-Ala2-MePhe4,Gly-ol5]enkephalin or [3H]6-desoxy-6 beta-fluoronaltreone. In the present study rats were pretreated with drugs known to attenuate the development of tolerance and dependence [the irreversible mu-receptor antagonist, beta-funaltrexamine (beta-FNA), and the inhibitor of tryptophan hydroxylase, para-chlorophenylalanine], prior to subcutaneous implantation of morphine pellets. The results demonstrated that 1) unlike chronic naltrexone, beta-FNA failed to upregulate opioid receptors and 2) both beta-funaltrexamine and PCPA pretreatment attenuated the chronic morphine-induced increase in the Bmax, but not the Kd, of the opioid receptor complex. These results provide evidence that naltrex-one-induced upregulation of the opioid receptor complex might occur indirectly as a consequence of interactions at beta-funaltrexamine-insensitive opioid receptors and that morphine-induced upregulation (increased Bmax) of the opioid receptor complex is a relevant in vitro marker related to the development of tolerance and dependence. These data collectively support the hypothesis that endogenous antiopiate peptides play an important role in the development of tolerance and dependence to morphine.  相似文献   

6.
7.
Y Sarne  A Kenner 《Life sciences》1987,41(5):555-562
Displacement from brain membranes of labeled opiates by low concentrations of enkephalins and of labeled enkephalins by low concentrations of opiates has been previously explained by the existence of a common high affinity site termed mu-1. An alternative interpretation of the same results is that the trough seen in the low concentration zone of the displacement curves represents cross binding of mu and delta opioid ligands to delta and mu receptors, respectively. In three sets of experiments with brain membranes, the size of the trough is shown to be dependent on the labeled ligand used: The ratio between the size of troughs seen with [3H]D-Ala, D-Leu enkephalin and with [3H]morphine varies with experimental conditions (storage of membranes at 4 degrees C for 72 h), with ratio of mu:delta receptors (e.g. in thalamus and cortex which are enriched in mu and delta sites, respectively) and with pretreatment of membranes with naloxonazine. These results can not be explained by a common high affinity site, but rather by binding of [3H]D-Ala, D-Leu enkephalin to mu and of [3H]morphine to delta opioid receptors.  相似文献   

8.
The binding properties of 14 beta-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM [3H] [D-Ala2,(Me)Phe4,Gly(ol)5]enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the mu binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The mu receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the delta-selective peptide [3H] [D-penicillamine2,D-penicillamine5]enkephalin (DPDPE) and (-)-[3H]bremazocine in the presence of mu and delta blockers, selective for kappa binding sites. Under conditions where 90% of the 0.25 nM [3H]DAGO binding sites were blocked, 80% of the 0.8 nM [3H]naloxone binding and 50% of the 0.25 nM 125I-labeled beta h-endorphin binding were inhibited by BAM alkylation. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the mu site did not afford protection.2+hese studies have demonstrated that when a disulfide bond  相似文献   

9.
Post-synaptic receptor modulation is thought to be one important mechanism involved in the adaptation of a neuronal system during chronic exposure to a drug. However, initial studies of opioid receptor regulation following chronic in vivo administration of narcotic agonists, such as morphine, reported no down-regulation in the number of opioid receptors in the brain. Subsequent studies, employing in vitro preparations, have reported evidence of opioid receptor down-regulation under specific conditions. It remains to be determined whether the in vitro phenomena of opioid receptor plasticity is relevant to the intact mammalian central nervous system. The data in this report shows that chronic in vivo administration the opioid peptide methionine enkephalin, results in a significant, regionally specific down-regulation of delta opioid receptors in rat brain: 30% decrease in receptor density in the striatum; no change in hypothalamus.  相似文献   

10.
The effects of incubation of rat brain membranes at 0 degrees C on the specific binding of mu-ligands (naloxone, morphine) and the delta-ligand (D-Ala2, D-Leu5-enkephalin) to opiate receptors were studied. The effects of lyophilization of rat brain membranes on the properties of the opiate receptors were determined. The lyophilized brain membrane preparations revealed an extraordinarily high stability as compared to "wet" membranes. The experimental results suggest that morphine and D-Ala2, D-Leu5-enkephalin binding both to the high affinity and low affinity sites has different nature and point to the utility of stable and standard preparations of lyophilized membranes for the use in the receptor analysis of opiate and opioid peptides.  相似文献   

11.
Opioid agonists bind to GTP-binding (G-protein)-coupled receptors to inhibit adenylyl cyclase. To explore the relationship between opioid receptor binding sites and opioid-inhibited adenylyl cyclase, membranes from rat striatum were incubated with agents that block opioid receptor binding. These agents included irreversible opioid agonists (oxymorphone-p-nitrophenylhydrazone), irreversible antagonists [naloxonazine, beta-funaltrexamine, and beta-chlornaltrexamine (beta-CNA)], and phospholipase A2. After preincubation with these agents, the same membranes were assayed for high-affinity opioid receptor binding [3H-labeled D-alanine-4-N-methylphenylalanine-5-glycine-ol-enkephalin (mu), 3H-labeled 2-D-serine-5-L-leucine-6-L-threonine enkephalin (delta), and [3H]ethylketocylazocine (EKC) sites] and opioid-inhibited adenylyl cyclase. Although most agents produced persistent blockade in binding of ligands to high-affinity mu, delta, and EKC sites, no change in opioid-inhibited adenylyl cyclase was detected. In most treated membranes, both the IC50 and the maximal inhibition of adenylyl cyclase by opioid agonists were identical to values in untreated membranes. Only beta-CNA blocked opioid-inhibited adenylyl cyclase by decreasing maximal inhibition and increasing the IC50 of opioid agonists. This effect of beta-CNA was not due to nonspecific interactions with G(i), Gs, or the catalytic unit of adenylyl cyclase, as neither guanylylimidodiphosphate-inhibited, NaF-stimulated, nor forskolin-stimulated activity was altered by beta-CNA pretreatment. Phospholipase A2 decreased opioid-inhibited adenylyl cyclase only when the enzyme was incubated with brain membranes in the presence of NaCl and GTP. These results confirm that the receptors that inhibit adenylyl cyclase in brain do not correspond to the high-affinity mu, delta, or EKC sites identified in brain by traditional binding studies.  相似文献   

12.
The present study demonstrates that pretreatment of rat brain membranes with (+)-cis-3-methylfentanyl [(+)-cis-MF], followed by extensive washing of the membranes, produces a wash-resistant decrease in the binding of [3H]-[D-ala2,D-leu5]enkephalin to the d binding site of the opioid receptor complex (delta cx binding site). Intravenous administration of (+)-cis-MF (50 micrograms/kg) to rats produced a pronounced catalepsy and also produced a wash-resistant masking of delta cx and mu binding sites in membranes prepared 120 min post-injection. Administration of 1 mg/kg i.v. of the opioid antagonist, 6-desoxy-6 beta-fluoronaltrexone (cycloFOXY), 100 min after the injection of (+)-cis-MF (20 min prior to the preparation of membranes) completely reversed the catatonia and restored masked delta cx binding sites to control levels. This was not observed with (+)-cycloFOXY. The implications of these and other findings for the mechanism of action of (+)-cis-MF and models of the opioid receptors are discussed.  相似文献   

13.
Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2 (NPFF), an endogenous mammalian antiopioid peptide, has been shown by other laboratories to attenuate the acute antinociceptive effects of morphine, the development of morphine tolerance, and naloxone-induced withdrawal in morphine-dependent rats. The present study determined the effect of chronic NPFF on mu opioid receptors and mRNA for the endogenous opioids dynorphin and enkephalin. Rats received ICV infusions of either saline or NPFF (5 μg/h) for 13 days via Alzet 2002 osmotic minipumps. Homogenate binding studies, which used whole brain membranes, demonstrated that NPFF decreased the Bmax of mu binding sites (labeled by [3H][ -Ala2-MePhe4,Gly-ol5]enkephalin) from 262 ± 12 to 192 ± 12 fmolmg protein, and increased the Kd from 1.1 to 2.3 nM. Quantitative receptor autoradiography and in situ hybridization experiments were conducted with sections collected at the level of the striatum. The density of mu opioid binding sites labeled by [3H][ -Ala2-MePhe4,Gly-ol5]enkephalin was decreased in all brain areas measured except the corpus callosum, and there was no change in dynorphin mRNA or enkephalin mRNA in the caudate, the nucleus accumbens, or the ventral pallidum. Rats chronically administered ICV morphine sulfate (20 μg/h) for 14 days developed tolerance to morphine and a low degree of dependence, as measured by naloxone-precipitated withdrawal. Chronic administration of NPFF concurrently with morphine sulfate did not significantly alter naloxone-induced withdrawal signs or the development of morphine tolerance. Viewed collectively with previous findings that chronic ICV infusion of anti-NPFF IgG upregulates mu receptors, these data provide additional evidence that the density of CNS mu receptors is tonically regulated by NPFF in the extracellular fluid. The action of NPFF to decrease mu receptors is consistent with an antiopioid role for this peptide; however, the fact that NPFF (administered into the lateral ventricle) did not appreciably alter expression of morphine tolerance and dependence contrasts with previous findings and reinforces the view that this effect is most reliably seen after third ventricle administration.  相似文献   

14.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

15.
Photolabile derivatives of D-Ala2-Leu5-enkephalin were prepared by synthetic procedures in which a 2-nitro-4-azidophenyl group is linked to the terminal carboxyl group of the enkephalin by means of an ethylenediamine or ethylenediamine beta-alanine spacer. These peptides bind to opiate receptors with nanomolar affinities and inhibit electrically stimulated contractions of the mouse vas deferens and adenylate cyclase activity of NG108-15 neuroblastoma x glioma hybrid cell membranes. Both inhibitions are reversed by the opiate antagonist naloxone. Photolysis of the ligands bound to rat brain membranes results in the loss of approximately 50% of the receptor sites. This decrease in receptor number is blocked by naloxone and requires light. A photolabile [3H]enkephalin derivative labels an equivalent number of sites under similar irradiation conditions.  相似文献   

16.
Identification of an opioid receptor subunit carrying the mu binding site   总被引:6,自引:0,他引:6  
E L Newman  E A Barnard 《Biochemistry》1984,23(23):5385-5389
The enkephalin affinity reagent [3H]Tyr-D-Ala-Gly-Phe-Leu-CH2Cl [( 3H]DALECK) was synthesized. It exhibited high-affinity reversible binding, at pH 7.4, to both mu and delta opioid receptor sites in rat brain membranes. At pH 8.1, nanomolar levels of [3H]DALECK produced an irreversible labeling in synaptic membranes, essentially only in one subunit of 58 000 daltons. The irreversible phase of the reaction reduced the subsequent binding of a mu-selective enkephalin derivative but not that of a delta-selective one. It is concluded that a mu subunit of the opioid receptor exists, can be alkylated specifically, and is of Mr 58 000.  相似文献   

17.
A photoreactive (d-Ala2, p-N3-Phe4-Met5)enkephalin derivative was prepared, iodinated with carrier-free 125I, and then purified by high-performance liquid chromatography. The purified radioactive photoprobe was monoiodinated at the amino terminal tyrosine residue. This radioactive photoprobe was used to photoaffinity label membranes prepared from the rat brain (minus cerebellum) and the spinal cord. The photolabeled membranes were analyzed by sodium dodecyl sulfate gel electrophoresis. A 46,000-Da protein was specifically photolabeled in these membrane preparations. The photolabeling of this protein was inhibited by peptides related to enkephalin but not by unrelated substance P or gastrin tetrapeptide. A concentration-dependent inhibition of the photolabeling of the 46,000-Da protein was observed in the presence of competing ligands specific for the μ-, δ-, and κ-opioid receptors. These data demonstrate that the radioactive photoprobe labels the μ-, δ-, and κ-opioid receptors. Although there is no evidence available to show that the 46,000-Da protein is identical in all the cases, our data strongly suggest that it is a binding protein common to all of the opioid receptor subtypes.  相似文献   

18.
This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opioids which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 hr or unstressed were injected ICV with either saline or 2.5 micrograms of beta-funaltrexamine (beta-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia (tail-flick assay) or were sacrificed and opioid binding in brain was determined. [3H]D-Ala2NMePhe4-Gly5(ol)enkephalin (DAGO) served as a specific ligand for mu- opioid receptors, and [3H]-bremazocine as a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. Beta-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with beta-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received beta-FNA while unstressed, consistent with the hypothesis that stress induces release of endogenous opioids that would protect opioid receptors from alkylation by beta-FNA. beta-FNA caused small and similar decreases in [3H]-DAGO binding in brain of both stressed and unstressed animals. Stressed rats injected with saline tended to have increased levels of [3H]DAGO and [3H]-bremazocine binding compared to the other groups. This outcome may be relevant to the tolerance to morphine analgesia caused by stress.  相似文献   

19.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   

20.
The subcellular distribution of leucine- and methionine-enkephalin in rat brain was studied using a highly selective and sensitive radioimmunoassay. About 85% of the total recoverable activity of each peptide was present in crude synaptosomal and microsomal fractions which contained about 60% and 25% respectively. Total opioid activity in brain subcellular extracts was measured by competition for opiat receptor binding. It is concluded that enkephalin accounts for the majority of the opioid activity in the brain extracts. It seems unlikely that the enkephalin in microsomal fractions are exclusively associated with opiate receptors present in these fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号