共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation changing the specificity of an RNA polymerase sigma factor 总被引:58,自引:0,他引:58
P Zuber J Healy H L Carter S Cutting C P Moran R Losick 《Journal of molecular biology》1989,206(4):605-614
2.
3.
4.
Summary E. gracilis chloroplast DNA Bam fragments E and D, coding for rRNA were cloned separately using the plasmid pBR 322 as vector and E. coli as host. The newly constructed recombinant plasmids EgcKS 8 and EgcKS 11 (containing the Bam HI fragments E and D respectively) were analysed and characterized by gel electrophoresis, electronmicroscopy and analytical ultracentrifugation.Abbreviations Ap Ampicillin - Tc Tetracycline-hydrochloride - Bam HI endonuclease isolated from Bacillus amyloliquefaciens - Eco RI endonuclease isolated from E. coli RY13 - Bgl II endonuclease isolated from Bacillus globiggi - EDTA Ethylene-diamine-tetra-acetic-acid - ctDNA chloroplast DNAAn abstract of this work was presented at the 10th annual meeting of the Union Schweizerischer Gesellschaften für Experimentelle Biologie, Davos 19th and 20th Mai, 1978. The recommendations of the Schweizerische Akademie für medizinische Wissenschaften for work with recombinant DNA-molecules were respected throughout this work. 相似文献
5.
RNA polymerase sigma factor that blocks morphological differentiation by Streptomyces coelicolor 总被引:3,自引:0,他引:3
The filamentous bacterium Streptomyces coelicolor undergoes a complicated process of morphological differentiation that begins with the formation of an aerial mycelium and culminates in sporulation. Genes required for the initiation of aerial mycelium formation have been termed bld (bald), describing the smooth, undifferentiated colonies of mutant strains. By using an insertional mutagenesis protocol that relies on in vitro transposition, we have isolated a bld mutant harboring an insertion in a previously uncharacterized gene, SCE59.12c, renamed here rsuA. The insertion mutant exhibited no measurable growth defect but failed to produce an aerial mycelium and showed a significant delay in the production of the polyketide antibiotic actinorhodin. The rsuA gene encodes an apparent anti-sigma factor and is located immediately downstream of SCE59.13c, renamed here sigU, whose product is inferred to be a member of the extracytoplasmic function subfamily of RNA polymerase sigma factors. The absence of rsuA in a strain that contained sigU caused a block in development, and the overexpression of sigU in an otherwise wild-type strain caused a delay in aerial mycelium formation. However, a strain in which both rsuA and sigU had been deleted was able to undergo morphological differentiation normally. We conclude that the rsuA-encoded anti-sigma factor is responsible for antagonizing the function of the sigma factor encoded by sigU. We also conclude that the sigU-encoded sigma factor is not normally required for development but that its uncontrolled activity obstructs morphological differentiation at an early stage. 相似文献
6.
Gómez-Santos N Pérez J Sánchez-Sutil MC Moraleda-Muñoz A Muñoz-Dorado J 《PLoS genetics》2011,7(6):e1002106
The dual toxicity/essentiality of copper forces cells to maintain a tightly regulated homeostasis for this metal in all living organisms, from bacteria to humans. Consequently, many genes have previously been reported to participate in copper detoxification in bacteria. Myxococcus xanthus, a prokaryote, encodes many proteins involved in copper homeostasis that are differentially regulated by this metal. A σ factor of the ECF (extracytoplasmic function) family, CorE, has been found to regulate the expression of the multicopper oxidase cuoB, the P1B-type ATPases copA and copB, and a gene encoding a protein with a heavy-metal-associated domain. Characterization of CorE has revealed that it requires copper to bind DNA in vitro. Genes regulated by CorE exhibit a characteristic expression profile, with a peak at 2 h after copper addition. Expression rapidly decreases thereafter to basal levels, although the metal is still present in the medium, indicating that the activity of CorE is modulated by a process of activation and inactivation. The use of monovalent and divalent metals to mimic Cu(I) and Cu(II), respectively, and of additives that favor the formation of the two redox states of this metal, has revealed that CorE is activated by Cu(II) and inactivated by Cu(I). The activation/inactivation properties of CorE reside in a Cys-rich domain located at the C terminus of the protein. Point mutations at these residues have allowed the identification of several Cys involved in the activation and inactivation of CorE. Based on these data, along with comparative genomic studies, a new group of ECF σ factors is proposed, which not only clearly differs mechanistically from the other σ factors so far characterized, but also from other metal regulators. 相似文献
7.
Mutational analysis of an extracytoplasmic-function sigma factor to investigate its interactions with RNA polymerase and DNA
下载免费PDF全文

The extracytoplasmic-function (ECF) family of sigma factors comprises a large group of proteins required for synthesis of a wide variety of extracytoplasmic products by bacteria. Residues important for core RNA polymerase (RNAP) binding, DNA melting, and promoter recognition have been identified in conserved regions 2 and 4.2 of primary sigma factors. Seventeen residues in region 2 and eight residues in region 4.2 of an ECF sigma factor, PvdS from Pseudomonas aeruginosa, were selected for alanine-scanning mutagenesis on the basis of sequence alignments with other sigma factors. Fourteen of the mutations in region 2 had a significant effect on protein function in an in vivo assay. Four proteins with alterations in regions 2.1 and 2.2 were purified as His-tagged fusions, and all showed a reduced affinity for core RNAP in vitro, consistent with a role in core binding. Region 2.3 and 2.4 mutant proteins retained the ability to bind core RNAP, but four mutants had reduced or no ability to cause core RNA polymerase to bind promoter DNA in a band-shift assay, identifying residues important for DNA binding. All mutations in region 4.2 reduced the activity of PvdS in vivo. Two of the region 4.2 mutant proteins were purified, and each showed a reduced ability to cause core RNA polymerase to bind to promoter DNA. The results show that some residues in PvdS have functions equivalent to those of corresponding residues in primary sigma factors; however, they also show that several residues not shared with primary sigma factors contribute to protein function. 相似文献
8.
9.
10.
11.
The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase
Aline Tabib-Salazar Bing Liu Philip Doughty Richard A. Lewis Somadri Ghosh Marie-Laure Parsy Peter J. Simpson Kathleen O’Dwyer Steve J. Matthews Mark S. Paget 《Nucleic acids research》2013,41(11):5679-5691
12.
13.
Ikegami A Nakasone K Fujita M Fujii S Kato C Usami R Horikoshi K 《Biochimica et biophysica acta》2000,1491(1-3):315-320
We have recently reported that a sigma(54)-like factor recognizes a DNA element, designated as region A, upstream of a pressure-regulated operon in piezophilic Shewanella violacea strain DSS12 (Nakasone et al., FEMS Microbiology Lett. 176 (1999) 351-356). In this study, we isolated and characterized the rpoN gene of this piezophilic bacterium. The rpoN gene was found to encode a putative protein consisting of 492 amino acid residues with a predicted molecular mass of 55359 Da. Significant homology was evident comparing the rpoN sequence of S. violacea with that of Escherichia coli (62.8% identity), Vibrio anguillarum (61.7% identity) and Pseudomonas putida (57.0% identity). The DNA-binding domain at the C-terminus of sigma(54) is well conserved in the case of the S. violacea rpoN gene product and the helix-turn-helix motif and the RpoN box are also present. In addition, the conserved glutamine-rich domain is present at the N-terminus. sigma(54) in S. violacea was expressed at a relatively constant level under various growth conditions as determined by both primer extension and Western blotting analyses. By means of a recombinant plasmid, a hexahistidine-tagged derivative of the sigma(54) from strain DSS12 was overexpressed in Escherichia coli and purified to near homogeneity. An electrophoretic mobility shift assay demonstrated that the purified sigma(54) protein specifically recognizes region A in the above-mentioned pressure-regulated operon. 相似文献
14.
15.
16.
17.
18.
19.
20.
Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of sigma 70 and sigma 38. 总被引:2,自引:7,他引:2
下载免费PDF全文

The intracellular levels of two principal sigma subunits, sigma 70 (sigma D, the rpoD gene product) and sigma 38 (sigma s, the rpoS gene product), in Escherichia coli MC4100 were determined by a quantitative Western immunoblot analysis. Results indicate that the level of sigma 70 is maintained at 50 to 80 fmol per micrograms of total proteins throughout the transition from the exponential growth phase to the stationary phase, while the level of sigma 38 protein is below the detection level at the exponential growth phase but increases to 30% of the level of sigma 70 when cell growth stops to enter into the stationary phase. Beside the stationary phase, the increase in sigma 38 level was observed in two cases: exposure to heat shock at the exponential phase and osmotic shock at the stationary phase. 相似文献