首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitously expressed c-Abl tyrosine kinase localizes to the cytoplasm and nucleus. Nuclear c-Abl is activated by diverse genotoxic agents and induces apoptosis; however, the mechanisms that are responsible for nuclear targeting of c-Abl remain unclear. Here, we show that cytoplasmic c-Abl is targeted to the nucleus in the DNA damage response. The results show that c-Abl is sequestered into the cytoplasm by binding to 14-3-3 proteins. Phosphorylation of c-Abl on Thr 735 functions as a site for direct binding to 14-3-3 proteins. We also show that, in response to DNA damage, activation of the c-Jun N-terminal kinase (Jnk) induces phosphorylation of 14-3-3 proteins and their release from c-Abl. Together with these results, expression of an unphosphorylated 14-3-3 mutant attenuates DNA-damage-induced nuclear import of c-Abl and apoptosis. These findings indicate that 14-3-3 proteins are pivotal regulators of intracellular c-Abl localization and of the apoptotic response to genotoxic stress.  相似文献   

2.
The ubiquitously expressed c-Abl tyrosine kinase is activated in the apoptotic response of cells to DNA damage. The mechanisms by which c-Abl signals the induction of apoptosis are not understood. Here we show that c-Abl binds constitutively to the mammalian homolog of the Schizosaccharomyces pombe Rad9 cell cycle checkpoint protein. The SH3 domain of c-Abl interacts directly with the C-terminal region of Rad9. c-Abl phosphorylates the Rad9 Bcl-2 homology 3 domain (Tyr-28) in vitro and in cells exposed to DNA-damaging agents. The results also demonstrate that c-Abl-mediated phosphorylation of Rad9 induces binding of Rad9 to the antiapototic Bcl-x(L) protein. The regulation of Rad9 by c-Abl in the DNA damage response is further supported by the demonstration that the interaction between c-Abl and Rad9 contributes to DNA damage-induced apoptosis. These findings indicate that Rad9 is regulated by a c-Abl-dependent mechanism in the apoptotic response to genotoxic stress.  相似文献   

3.
Activation of the initiator caspase-9 is essential for induction of apoptosis by developmental signals, oncogenic transformation, and genotoxic stress. The c-Abl tyrosine kinase is also involved in the apoptotic response to DNA damage. The present results demonstrate that c-Abl binds directly to caspase-9. We show that c-Abl phosphorylates caspase-9 on Tyr-153 in vitro and in cells treated with DNA damaging agents. Moreover, inhibition of c-Abl with STI571 blocked DNA damage-induced autoprocessing of caspase-9 to the p35 subunit and activation of caspase-3. Caspase-9(Y153F) also attenuated DNA damage-induced processing of caspase-9 to p35, activation of caspase-3, and apoptosis. These findings indicate that caspase-9 autoprocessing is regulated by c-Abl in the apoptotic response to genotoxic stress.  相似文献   

4.
5.
Radiation therapy for head and neck cancer can result in extensive damage to normal adjacent tissues such as the salivary gland and oral mucosa. We have shown previously that tyrosine phosphorylation at Tyr-64 and Tyr-155 activates PKCδ in response to apoptotic stimuli by facilitating its nuclear import. Here we have identified the tyrosine kinases that mediate activation of PKCδ in apoptotic cells and have explored the use of tyrosine kinase inhibitors for suppression of irradiation-induced apoptosis. We identify the damage-inducible kinase, c-Abl, as the PKCδ Tyr-155 kinase and c-Src as the Tyr-64 kinase. Depletion of c-Abl or c-Src with shRNA decreased irradiation- and etoposide-induced apoptosis, suggesting that inhibitors of these kinases may be useful therapeutically. Pretreatment with dasatinib, a broad spectrum tyrosine kinase inhibitor, blocked phosphorylation of PKCδ at both Tyr-64 and Tyr-155. Expression of “gate-keeper” mutants of c-Abl or c-Src that are active in the presence of dasatinib restored phosphorylation of PKCδ at Tyr-155 and Tyr-64, respectively. Imatinib, a c-Abl-selective inhibitor, also specifically blocked PKCδ Tyr-155 phosphorylation. Dasatinib and imatinib both blocked binding of PKCδ to importin-α and nuclear import, demonstrating that tyrosine kinase inhibitors can inhibit nuclear accumulation of PKCδ. Likewise, pretreatment with dasatinib also suppressed etoposide and radiation induced apoptosis in vitro. In vivo, pre-treatment of mice with dasatinib blocked radiation-induced apoptosis in the salivary gland by >60%. These data suggest that tyrosine kinase inhibitors may be useful prophylactically for protection of nontumor tissues in patients undergoing radiotherapy of the head and neck.  相似文献   

6.
The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in activating p53 on apoptotic promoters in a reporter assay, and c-Abl was required for endogenous HIPK2 accumulation and phosphorylation of p53 at Ser46 in response to DNA damage by γ- and UV radiation. Accumulation of HIPK2 in nuclear speckles and association with promyelocytic leukemia protein (PML) in response to DNA damage were also dependent on c-Abl activity. At high cell density, the Hippo pathway inhibits DNA damage-induced c-Abl activation. Under this condition, DNA damage-induced HIPK2 accumulation, phosphorylation of p53 at Ser46, and apoptosis were attenuated. These data demonstrate a new mechanism for the induction of DNA damage-induced apoptosis by c-Abl and illustrate network interactions between serine/threonine and tyrosine kinases that dictate cell fate.  相似文献   

7.
DNA damage triggers Atm- and/or Atr-dependent signaling pathways to control cell cycle progression, apoptosis, and DNA repair. However, how Atm and Atr are activated is not fully understood. One of the downstream targets of Atm is non-receptor tyrosine kinase c-Abl, which is phosphorylated and activated by Atm. The current view is that c-Abl relays pro-apoptotic signals from Atm to p73 and p53. Here we show that c-Abl deficiency resulted in a broad spectrum of defects in cell response to genotoxic stress, including activation of Chk1 and Chk2, activation of p53, nuclear foci formation, apoptosis, and DNA repair, suggesting that c-Abl might also act upstream of the DNA damage-activated signaling cascades in addition to its role in p73 and p53 regulation. Indeed, we found that c-Abl is required for proper activation of both Atm and Atr. c-Abl is bound to the chromatin and shows enhanced interaction with Atm and Atr in response to DNA damage. c-Abl can phosphorylate Atr on Y291 and Y310 and this phosphorylation appears to have a positive role in Atr activation under genotoxic stress. These findings suggest that Atm-mediated c-Abl activation in cell response to double-stranded DNA breaks might facilitate the activation of both Atm and Atr to regulate their downstream cellular events.  相似文献   

8.
The c-Abl protein tyrosine kinase is activated by certain DNA-damaging agents and regulates induction of the stress-activated c-Jun N-terminal protein kinase (SAPK). Here we show that nuclear c-Abl associates with MEK kinase 1 (MEKK-1), an upstream effector of the SEK1-->SAPK pathway, in the response of cells to genotoxic stress. The results demonstrate that the nuclear c-Abl binds to MEKK-1 and that c-Abl phosphorylates MEKK-1 in vitro and in vivo. Transient-transfection studies with wild-type and kinase-inactive c-Abl demonstrate c-Abl kinase-dependent activation of MEKK-1. Moreover, c-Abl activates MEKK-1 in vitro and in response to DNA damage. The results also demonstrate that c-Abl induces MEKK-1-mediated phosphorylation and activation of SEK1-SAPK in coupled kinase assays. These findings indicate that c-Abl functions upstream of MEKK-1-dependent activation of SAPK in the response to genotoxic stress.  相似文献   

9.
To control the G1/S transition and the progression through the S phase, the activation of the cyclin-dependent kinase (CDK) 2 involves the binding of cyclin E then cyclin A, the activating Thr-160 phosphorylation within the T-loop by CDK-activating kinase (CAK), inhibitory phosphorylations within the ATP binding region at Tyr-15 and Thr-14, dephosphorylation of these sites by cdc25A, and release from Cip/Kip family (p27kip1 and p21cip1) CDK inhibitors. To re-assess the precise relationship between the different phosphorylations of CDK2, and the influence of cyclins and CDK inhibitors upon them, we introduce here the use of the high resolution power of two-dimensional gel electrophoresis, combined to Tyr-15- or Thr-160-phosphospecific antibodies. The relative proportions of the potentially active forms of CDK2 (phosphorylated at Thr-160 but not Tyr-15) and inactive forms (non-phosphorylated, phosphorylated only at Tyr-15, or at both Tyr-15 and Thr-160), and their respective association with cyclin E, cyclin A, p21, and p27, were demonstrated during the mitogenic stimulation of normal human fibroblasts. Novel observations modify the current model of the sequential CDK2 activation process: (i) Tyr-15 phosphorylation induced by serum was not restricted to cyclin-bound CDK2; (ii) Thr-160 phosphorylation engaged the entirety of Tyr-15-phosphorylated CDK2 associated not only with a cyclin but also with p27 and p21, suggesting that Cip/Kip proteins do not prevent CDK2 activity by impairing its phosphorylation by CAK; (iii) the potentially active CDK2 phosphorylated at Thr-160 but not Tyr-15 represented a tiny fraction of total CDK2 and a minor fraction of cyclin A-bound CDK2, underscoring the rate-limiting role of Tyr-15 dephosphorylation by cdc25A.  相似文献   

10.
The c-Abl tyrosine kinase is activated by some forms of DNA damage, including ionizing radiation, but not UV radiation. The functions of this activation in the damage response pathways remain obscure. To identify potential targets of c-Abl kinase, we utilized the yeast two-hybrid system to screen a murine cDNA library. One c-Abl binding protein of particular interest was the large subunit (DDB1) of the heterodimeric complex with UV-damaged DNA binding activity (UV-DDB). This complex binds with high specificity to DNA damaged by UV, is absent in a subset of xeroderma pigmentosum group E cells, and is required for global genomic repair of UV-induced damage. The association of c-Abl with DDB1 required the kinase domain of c-Abl and preserved the interaction between DDB1 and the small subunit (DDB2) of the UV-DDB complex. Significantly, overexpression of c-Abl increased tyrosine phosphorylation of DDB2 and suppressed UV-DDB activity. Conversely, a dominant negative, kinase-deficient allele of c-Abl decreased tyrosine phosphorylation of DDB2 and dramatically stimulated UV-DDB activity. These results suggest that one role of c-Abl may be to negatively regulate UV-DDB activity by phosphorylation of DDB2.  相似文献   

11.
Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage.  相似文献   

12.
13.
ADAM15, a disintegrin and metalloproteinase, is capable of counteracting genotoxic stress-induced apoptosis by the suppression of caspase-3 activation. A cell line expressing the membrane-bound ADAM15 without its cytoplasmic tail, however, lost this anti-apoptotic property, suggesting a crucial role of the intracellular domain as a scaffold for recruitment of survival signal-transducing kinases. Accordingly, an enhanced phosphorylation of FAK at Tyr-397, Tyr-576, and Tyr-861 was detected upon genotoxic stress by camptothecin in ADAM15-transfected T/C28a4 cells, but not in transfectants expressing an ADAM15 mutant without the cytoplasmic tail. Accordingly, a specific binding of the cytoplasmic ADAM15 domain to the C terminus of FAK could be shown by mammalian two-hybrid, pulldown, and far Western studies. In cells expressing full-length ADAM15, a concomitant activation of Src at Tyr-416 was detected upon camptothecin exposure. Cells transfected with a chimeric construct consisting of the extracellular IL-2 receptor α-chain and the cytoplasmic ADAM15 domain were IL-2-stimulated to prove that the ADAM15 tail can transduce a percepted extracellular signal to enhance FAK and Src phosphorylation. Our studies further demonstrate Src binding to FAK but not a direct Src interaction with ADAM15, suggesting FAK as a critical intracellular adaptor for ADAM15-dependent enhancement of FAK/Src activation. Moreover, the apoptosis induction elicited by specific inhibitors (PP2, FAK 14 inhibitor) of FAK/Src signaling was significantly reduced by ADAM15 expression. The newly uncovered counter-regulatory response to genotoxic stress in a chondrocytic survival pathway is potentially also relevant to apoptosis resistance in neoplastic growth.  相似文献   

14.
The tumor promoter phorbol ester (TPA) modulates the binding affinity and the mitogenic capacity of the epidermal growth factor (EGF) receptor. Moreover, TPA-induced kinase C phosphorylation occurs mainly on Thr-654 of the EGF receptor, suggesting that the phosphorylation state of this residue regulates ligand-binding affinity and kinase activity of the EGF receptor. To examine the role of this residue, we prepared a Tyr-654 EGF receptor cDNA construct by in vitro site-directed mutagenesis. Like the wild-type receptor, the mutant receptor exhibited typical high- and low-affinity binding sites when expressed on the surface of NIH 3T3 cells. Moreover, TPA regulated the affinity of both wild-type and mutant receptors and stimulated receptor phosphorylation of serine and threonine residues other than Thr-654. The addition of TPA to NIH 3T3 cells expressing a wild-type human EGF receptor blocked the mitogenic capacity of EGF. However, this inhibition did not occur in cells expressing the Tyr-654 EGF receptor mutant. In the latter cells, EGF was able to stimulate DNA synthesis even in the presence of inhibitory concentrations of TPA. While phosphorylation of sites other than Thr-654 may regulate ligand-binding affinity, the phosphorylation of Thr-654 by kinase C appears to provide a negative control mechanism for EGF-induced mitogenesis in mouse NIH 3T3 fibroblasts.  相似文献   

15.
The Lyn protein-tyrosine kinase is activated in the cellular response to DNA-damaging agents. Here we demonstrate that Lyn associates constitutively with the SHPTP1 protein-tyrosine phosphatase. The SH3 domain of Lyn interacts directly with SHPTP1. The results show that Lyn phosphorylates SHPTP1 at the C-terminal Tyr-564 site. Lyn-mediated phosphorylation of SHPTP1 stimulates SHPTP1 tyrosine phosphatase activity. We also demonstrate that treatment of cells with 1-beta-D-arabinofuranosylcytosine and other genotoxic agents induces Lyn-dependent phosphorylation and activation of SHPTP1. The significance of the Lyn-SHPTP1 interaction is supported by the demonstration that activation of Lyn contributes in part to the apoptotic response to ara-C treatment and that SHPTP1 attenuates this response. These findings support a functional interaction between Lyn and SHPTP1 in the response to DNA damage.  相似文献   

16.
Phospholipid scramblase 1 (PLSCR1) is a plasma membrane protein that has been proposed to play a role in the transbilayer movement of plasma membrane phospholipids. PLSCR1 contains multiple proline-rich motifs resembling Src homology 3 (SH3) domain-binding sites. An initial screen against 13 different SH3 domains revealed a marked specificity of PLSCR1 for binding to the Abl SH3 domain. Binding between intracellular PLSCR1 and c-Abl was demonstrated by co-immunoprecipitation of both proteins from several cell lines. Deletion of the proline-rich segment in PLSCR1 (residues 1--118) abolished its binding to the Abl SH3 domain. PLSCR1 was Tyr-phosphorylated by c-Abl in vitro. Phosphorylation was abolished by mutation of Tyr residues Tyr(69)/Tyr(74) within the tandem repeat sequence (68)VYNQPVYNQP(77) of PLSCR1, implying that these residues are the likely sites of phosphorylation. Cellular PLSCR1 was found to be constitutively Tyr-phosphorylated in several cell lines. The Tyr phosphorylation of PLSCR1 was increased upon overexpression of c-Abl and significantly reduced either upon cell treatment with the Abl kinase inhibitor STI571, or in Abl-/- mouse fibroblasts, suggesting that cellular PLSCR1 is a normal substrate of c-Abl. Cell treatment with the DNA-damaging agent cisplatin activated c-Abl kinase and increased Tyr phosphorylation of PLSCR1. The cisplatin-induced phosphorylation of PLSCR1 was inhibited by STI571 and was not observed in Abl-/- fibroblasts. These findings indicate that c-Abl binds and phosphorylates PLSCR1, and raise the possibility that an interaction between c-Abl and plasma membrane PLSCR1 might contribute to the cellular response to genotoxic stress.  相似文献   

17.
Activation of the fibroblast growth factor (FGF) receptor 3 (FGFR3) has been linked to the development of human cancers by mechanisms that are not well understood. The MUC1 oncoprotein is aberrantly overexpressed by certain hematologic malignancies and most human carcinomas. The present studies show that MUC1 associates with FGFR3. Stimulation of cells with FGF1 increased the interaction between MUC1 and FGFR3. FGF1 stimulation also induced c-Src-dependent tyrosine phosphorylation of the MUC1 cytoplasmic domain on a YEKV motif. FGF1-induced tyrosine phosphorylation of MUC1 was associated with increased binding of MUC1 to beta-catenin and targeting of MUC1 and beta-catenin to the nucleus. FGF1 also induced binding of MUC1 to the heat shock protein 90 (HSP90) chaperone by a mechanism dependent on phosphorylation of the YEKV motif. Notably, beta-catenin and HSP90 compete for binding to the MUC1 cytoplasmic domain, indicating that MUC1 forms mutually exclusive complexes with these proteins. The results also show that inhibition of HSP90 with geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin attenuates FGF1-induced binding of MUC1 to HSP90 and targeting of MUC1 to the mitochondrial outer membrane. These findings indicate that FGF1 induces phosphorylation of MUC1 on YEKV and thereby activates two distinct pathways: (a) nuclear localization of MUC1 and beta-catenin and (b) delivery of MUC1 to mitochondria by HSP90.  相似文献   

18.
Li HH  Li AG  Sheppard HM  Liu X 《Molecular cell》2004,13(6):867-878
The largest subunit of TFIID, TAF1, possesses an intrinsic protein kinase activity and is important for cell G1 progression and apoptosis. Since p53 functions by inducing cell G1 arrest and apoptosis, we investigated the link between TAF1 and p53. We found that TAF1 induces G1 progression in a p53-dependent manner. TAF1 interacts with and phosphorylates p53 at Thr-55 in vivo. Substitution of Thr-55 with an alanine residue (T55A) stabilizes p53 and impairs the ability of TAF1 to induce G1 progression. Furthermore, both RNAi-mediated TAF1 ablation and apigenin-mediated inhibition of the kinase activity of TAF1 markedly reduced Thr-55 phosphorylation. Thus, phosphorylation and the resultant degradation of p53 provide a mechanism for regulation of the cell cycle by TAF1. Significantly, the Thr-55 phosphorylation was reduced following DNA damage, suggesting that this phosphorylation contributes to the stabilization of p53 in response to DNA damage.  相似文献   

19.
Using the specific Abl tyrosine kinase inhibitor STI 571, we purified unphosphorylated murine type IV c-Abl and measured the kinetic parameters of c-Abl tyrosine kinase activity in a solution with a peptide-based assay. Unphosphorylated c-Abl exhibited substantial peptide kinase activity with K(m) of 204 microm and V(max) of 33 pmol min(-1). Contrary to previous observations using immune complex kinase assays, we found that a transforming c-Abl mutant with a Src homology 3 domain point mutation (P131L) had significantly (about 6-fold) higher intrinsic kinase activity than wild-type c-Abl (K(m) = 91 microm, V(max) = 112 pmol min(-1)). Autophosphorylation stimulated the activity of wild-type c-Abl about 18-fold and c-Abl P131L about 3.6-fold, resulting in highly active kinases with similar catalytic rates. The autophosphorylation rate was dependent on Abl protein concentration consistent with an intermolecular reaction. A tyrosine to phenylalanine mutation (Y412F) at the c-Abl residue homologous to the c-Src catalytic domain autophosphorylation site impaired the activation of wild-type c-Abl by 90% but reduced activation of c-Abl P131L by only 45%. Mutation of a tyrosine (Tyr-245) in the linker region between the Src homology 2 and catalytic domains that is conserved among the Abl family inhibited the autophosphorylation-induced activation of wild-type c-Abl by 50%, whereas the c-Abl Y245F/Y412F double mutant was minimally activated by autophosphorylation. These results support a model where c-Abl is inhibited in part through an intramolecular Src homology 3-linker interaction and stimulated to full catalytic activity by sequential phosphorylation at Tyr-412 and Tyr-245.  相似文献   

20.
Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins.   总被引:1,自引:0,他引:1  
Cyclin-dependent kinases (Cdks) are key regulators of the eukaryotic cell division cycle. Cdk1 (Cdc2) and Cdk2 should be bound to regulatory subunits named cyclins as well as phosphorylated on a conserved Thr located in the T-loop for full enzymatic activity. Cdc2- and Cdk2-cyclin complexes can be inactivated by phosphorylation on the catalytic cleft-located Thr-14 and Tyr-15 residues or by association with inhibitory subunits such as p21(Cip1). We have recently identified a novel Cdc2 regulator named RINGO that plays an important role in the meiotic cell cycle of Xenopus oocytes. RINGO can bind and activate Cdc2 but has no sequence homology to cyclins. Here we report that, in contrast with Cdc2- cyclin complexes, the phosphorylation of Thr-161 is not required for full activation of Cdc2 by RINGO. We also show that RINGO can directly stimulate the kinase activity of Cdk2 independently of Thr-160 phosphorylation. Moreover, RINGO-bound Cdc2 and Cdk2 are both less susceptible to inhibition by p21(Cip1), whereas the Thr-14/Tyr-15 kinase Myt1 can negatively regulate the activity of Cdc2-RINGO with reduced efficiency. Our results indicate that Cdk-RINGO complexes may be active under conditions in which cyclin-bound Cdks are inhibited and can therefore play different regulatory roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号