首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
The genus Bellevalia is represented in Greece by eight taxa, three of which are endemic. Bellevalia brevipedicellata (2n = 8) and B. sitiaca (2n = 16) are restricted to the island of Kriti, while B. hyacinthoides (2n = 8, 12) is distributed in the Kiklades Islands, the central and southern mainland and the Ionian Islands. Four taxa, i.e. B. dubia subsp. boissieri (2n = 8), B. trifoliata (2n = 8), B. romana (2n = 8) and B. ciliata (2n = 8, 16) are Mediterranean elements. The presence of B. edirnensis (2n = 24) is reported as new for the Greek flora. New ploidy levels of three Bellevalia species (triplo‐, tetra‐ and hexaploids) are reported for the first time. The main morphological features, the chromosome numbers, the karyotype morphology, as well as the geographical distribution and further issues of taxonomy and conservation of all Bellevalia taxa in Greece are presented and discussed. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 723–739.  相似文献   

2.
Genomes of 11 Quercus species were characterized using cytogenetic (Giemsa C-banding, fluorochrome banding), molecular-cytogenetic (fluorescence in situ hybridization, FISH, to ribosomal genes) and molecular (dot-blot for ribosomal gene-copy number assessment) techniques. Ribosomal genes are the first DNA sequences to be physically mapped in oaks, and the copy number of the 18S-5.8S-26 S rRNA genes is estimated for the first time. Oak karyotypes were analysed on the basis of DAPI banding and FISH patterns; five marker chromosomes were found. In addition, chromosomal organization of ribosomal genes with respect to AT- and GC-differentiated heterochromatin was studied. Fluorochrome staining produced very similar CMA/DAPI banding patterns, and the position and number of ribosomal loci were identical for all the species studied. The 18S-5.8S-26 S rRNA genes in oak complements were represented by a major locus at the subterminal secondary constriction (SC) of the only subtelocentric chromosome pair and a minor locus at paracentromeric SC of one metacentric pair. The only 5 S rDNA locus was revealed at the paracentromeric region of the second largest metacentric pair. A striking karyotypic similarity, shown by both fluorochrome banding and FISH patterns, implies close genome relationships among oak species no matter their geographic origin (European or American) or their ecophysiology (deciduous or evergreens). Dot-blot analysis gave preliminary evidence for different copy numbers of 18S-5.8S-26 S rRNA genes in diploid genomes of Q. cerris, Q. ilex, Q. petraea, Q. pubescens and Q. robur (2700, 1300, 2200, 4000 and 2200 copies, respectively) that was correlated with the size polymorphism of the major locus. Received: 26 February 1999 / Accepted: 16 March 1999  相似文献   

3.
Knowledge of the chromosome variation in wild populations is essential to understand the pathways and restrictions of karyotype evolution in plants. The aim of this study is to conduct an intraspecific analysis of the karyotypes by fluorochrome banding and ribosomal DNA (rDNA) loci detection by fluorescent in situ hybridization (FISH) and of the meiotic behaviour in natural populations of Lathyrus nervosus, sect. Notolathyrus. Chromosome banding showed that, despite the high constancy in the karyotype formula and in the rDNA loci among populations, there is intraspecific variation in the amount and distribution pattern of 4’,6-diamidino-2-phenylindole (DAPI+) heterochromatin. However, those changes were not related to the total chromosome length of the haploid complements. This fact demonstrates that structural chromosome changes may be one of the most important mechanisms for karyotype variation among natural populations of L. nervosus. The chromosome number surveyed at the population level revealed the first case of polyploidy in South American species and the first case of uneven polyploidy of the genus. All the chromosome markers analysed indicated that the polyploids found originated by autopolyploidy. The meiotic analysis showed different chromosome abnormalities that may be generating numerical and structural changes in the sporads. The finding of unreduced gametes that are alive at anthesis suggests sexual polyploidization as the most probable mechanism involved in the origin of these 3x and 4x autopolyploid cytotypes in L. nervosus.  相似文献   

4.
The subsection Asperae of genus Hydrangea L. (Hydrangeaceae) has been investigated for three reasons: several ambiguous classifications concerning Hydrangea aspera have been published, unexpected differences in genome size among seven accessions have been reported Cerbah et al. (Theor Appl Genet 103:45–51, 2001), and two atypical chromosome numbers (2n = 30 for Hydrangea involucrata and 2n = 34 for H. aspera) have been found when all other species of the genus present 2n = 36. Therefore, these two species and four subspecies of Hydrangea in all 29 accessions were analyzed for their genome size, chromosome number, and karyotype features. This investigation includes flow cytometric measurements of nuclear DNA content and bases composition (GC%), fluorochrome banding for detection of GC- and AT-rich DNA regions, and fluorescent in situ hybridisation (FISH) for chromosome mapping of 5 S and 18 S-5.8 S-26 S rDNA genes. In the H. aspera complex, the genome size ranged from 2.98 (subsp. sargentiana) to 4.67 pg/2C (subsp. aspera), an exceptional intraspecific variation of 1.57-fold. The mean base composition was 40.5% GC. Our report establishes the first karyotype for the species H. involucrata, and for the subspecies of H. aspera which indeed present different formulae, offering an element of discrimination. FISH and fluorochrome banding revealed the important differentiation between these two species (H. involucrata and H. aspera) and among four subspecies of the H. aspera complex. Our results are in agreement with the Chinese classification that places the groups Kawakami and Villosa as two different species: Hydrangea villosa Rehder and Hydrangea kawakami Hayata. This knowledge can contribute to effective germplasm management and horticultural use.  相似文献   

5.
 Three related and taxonomically close species of the genus Lilium (L. pyrenaicum Gouan, L. pomponium L. and L. carniolicum Bernh.), all of them with 2n=24 chromosomes, have been studied for chromosomal differentiation, using fluorochrome banding and fluorescence in situhybridization (FISH), and for genome size and GC percentage using flow cytometry. The total DNA content of L. pomponium (2C=70.26 pg) was about 5% higher than that of L. pyrenaicum (2C=67.74) and L. carniolicum (2C=67.37 pg), while GC percentage was higher in this last species (36.60%) than in L. pomponium (35.56%) and lower than in L. pyrenaicum (37.92%). Silver staining, fluorochrome banding with chromomycin A3 (CMA) and fluorescence in situ hybridization (FISH) clearly pointed out the number of nucleoli, the number and position of GC-rich bands and the number and location of rDNA sites thus permitting distinction of the three species at chromosomal level. Two families of ribosomal genes, 18S-5.8S-26S (18S) and 5S rRNA genes, were separated onto different pairs in chromosome complements of examined species. Chromosome regions containing both kinds of rRNA genes were also GC-rich regions. The results revealed a clear interspecific differentiation at the chromosomal level and permitted the discussion about relationships among the species. Received June 21, 2002; accepted October 4, 2002 Published online: Febraury 7, 2003  相似文献   

6.
The karyotypes of nine Tanacetum taxa distributed in north-east Anatolia, Turkey, were determined and evaluated by cluster analysis and principal-components analysis. Chromosome numbers were 2n = 2x = 18 (8 taxa) and 4x = 36 (1 taxon). Somatic chromosome numbers of two taxa and a new ploidy level in one taxon are reported for the first time. Karyotype analysis indicated that chromosomes of Tanacetum taxa have predominantly median centromeres. The taxa studied differed significantly in the size of the short arms and long arms, and the arm ratio of each pair of homologous chromosomes, indicating structural rearrangements of the chromosomes have been involved in diversification of the taxa. They were placed in 2A, 3A, and 2B of Stebbins’ karyotype classification, showing the presence of a primitive symmetrical karyotype in the genus. Several systematic and evolutionary aspects of the genus are discussed on the basis of karyological data.  相似文献   

7.
8.
Castiglia R  Makundi R  Corti M 《Genetica》2007,131(2):201-207
This paper describes a case which presents an evident variation from the “standard” XX/XY sex chromosomal constitution in a rodent, Acomys sp. This species known to be found in three localities of East Africa has only recently been separated from A. spinosissimus, its closest relative. In our study, five specimens of Acomys sp. and eight specimens of A. spinosissimus were live-trapped in five localities. Comparisons between the two taxa assed by G- banding show a complete homology in the chromosomal shape and banding pattern for 29 pairs of chromosomes corresponding to the complete autosomal set of A. spinosissimus. However, while all the A. spinosissimus analysed have 2n = 60 and a XY-XX system, in Acomys sp. males and females constitute mosaics for sex chromosomes in the bone marrow cells. Females (2n = 59, 60) have an excess (97%) of aneuploid cells with one single giant X chromosome, and males (2n = 60, 61) show X0/XY cells occurring in somatic tissues and XY cells in the germinal lineage. In addition, an odd heterochromatic submetacentric chromosome was identified in all the cells examined in two males and a female of Acomys sp. Since this chromosome was not related to sex determination and it is not present in all the analysed specimens, it can be considered as a B chromosome. Finally, the in situ fluorescence hybridisation (FISH) with telomeric probes showed a very intense interstitial telomeric signal (ITS) at the medial part on the long heterochromatic arm of the X chromosome. This could be due to recent chromosomal rearrangement.  相似文献   

9.
The seven Bellevalia species and subspecies known from Italy, representing about 10% of the genus and three out of six sections, were studied. An integrated morphological, karyological and molecular approach was used to infer phylogenetic and systematic relationships among them. B. romana (the generitype) is the most distinctive species on karyotype asymmetry grounds. B. boissieri and B.dubia, usually considered as subspecies of one species (the latter endemic to Sicily), deserve specific status based on biparental nrDNA markers (internal transcribed spacer, ITS), since they do not form a single clade. The allotetraploid endemic B. pelagica, morphologically similar to B. romana, is sister to the latter under parsimony, both in morphological and ITS trees; it is also related with B. dubia, based on karyotype asymmetry and a uniparental cpDNA marker (trnL(UAA)trnF(GAA) IGS (intergenic spacer)). A second allotetraploid endemic, B. webbiana, is closely related, on morphological, karyological and molecular grounds, with B. boissieri and B. ciliata, and also with B. trifoliata, three species that might all involved in its origin. B. sect. Conicae Feinbr. and sect. Nutantes Feinbr. are here typified, the former (type: B. ciliata) is most likely a synonym of the latter (type: B. trifoliata).  相似文献   

10.
Several chromosome types have been recognized in Citrus and related genera by chromomycin A3 (CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata (“Barnes”, “Fawcett”, “Flying Dragon”, “Pomeroy”, “Rubidoux”, “USDA”) and one P. trifoliata × C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA+ banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus × Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm. During the submission of this paper, we analyzed 25 other citrus cultivars with the same methodology and we found that the chromosome marker reported here can indeed distinguish Poncirus trifoliata from grapefruits, pummelos, and one variegated access of Citrus, besides the previously reported access of limes, limons, citrons, and sweet-oranges. However, among 14 mandarin cultivars, two of them displayed a single B/5S-45S chromosome, whereas in Citrus hystrix D.C., a far related species belonging to the Papeda subgenus, this chromosome type was found in homozygosis. Since these two mandarin cultivars are probably of hybrid origin, we assume that for almost all commercial cultivars and species of the subgenus Citrus this B type chromosome is a useful genetic marker.  相似文献   

11.
The chromosomes of the diploid and tetraploid loach Misgurnus anguillicaudatus were analyzed by staining with Ag, chromomycin A3 (CMA3)/distamycin A (DA), and DA/4′,6-diamidino-2-phenylindole (DAPI), and using fluorescence in situ hybridization (FISH) with 5.8S + 28S rDNA as a probe. Nucleolus organizer regions (NORs) were mapped to the telomeric region of the short arms of the largest (first) metacentric chromosome pair in the diploid loach with 2n = 50 and the homologous quartet in the tetraploid loach with 4n = 100. The NORs were positive at the same region of the first metacentric chromosome for Ag and CMA3/DA stainings, but negative for DA/DAPI staining. Four signals at the homologs within the same quartet suggest the duplication of the entire genome from diploid to tetraploid status. However, a size difference was detected between the rDNA signals by FISH and CMA3 banding.  相似文献   

12.
The genomic organisation of the seven cultivated Vigna species, V. unguiculata, V. subterranea, V. angularis, V. umbellata, V. radiata, V. mungo and V. aconitifolia, was determined using sequential combined PI and DAPI (CPD) staining and dual‐colour fluorescence in situ hybridisation (FISH) with 5S and 45S rDNA probes. For phylogenetic analyses, comparative genomic in situ hybridisation (cGISH) onto somatic chromosomes and sequence analysis of the internal transcribed spacer (ITS) of 45S rDNA were used. Quantitative karyotypes were established using chromosome measurements, fluorochrome bands and rDNA FISH signals. All species had symmetrical karyotypes composed of only metacentric or metacentric and submetacentric chromosomes. Distinct heterochromatin differentiation was revealed by CPD staining and DAPI counterstaining after FISH. The rDNA sites among all species differed in their number, location and size. cGISH of V. umbellata genomic DNA to the chromosomes of all species produced strong signals in all centromeric regions of V. umbellata and V. angularis, weak signals in all pericentromeric regions of V. aconitifolia, and CPD‐banded proximal regions of V. mungo var. mungo. Molecular phylogenetic trees showed that V. angularis and V. umbellata were the closest relatives, and V. mungo and V. aconitifolia were relatively closely related; these species formed a group that was separated from another group comprising V. radiata, V. unguiculata ssp. sesquipedalis and V. subterranea. This result was consistent with the phylogenetic relationships inferred from the heterochromatin and cGISH patterns; thus, fluorochrome banding and cGISH are efficient tools for the phylogenetic analysis of Vigna species.  相似文献   

13.
Using the fluorescence in situ hybridization (FISH) technique, we conducted karyotype analyses to identify the lost chromosomes in three somaclonal variants obtained from tissue culture of wildAllium tuberosum (2n = 4X = 32). The three lost chromosomes of the At29 variant (2n = 29) were all chromosome 2, the two for At30 (2n = 30) were chromosomes 7 and 8, and At31 was missing chromosome 2. Chromosome compositions of these variants were confirmed as being fixed lines during two years of greenhouse cultivation. The bicolor FISH technique, involving both 5S and 18S–5.8S–26S ribosomal RNA genes as probes, was used to assign chromosomal locations and to confirm whether the lost chromosomes contained any rRNA markers. The 5S rRNA gene signals in all variants as well as the wild type were detected as two sets, one on the intercalary region of the short arm of chromosome 3, the other on the intercalary region of the long arm of chromosome 6. One 18S–5.8S–26S rRNA gene site on the secondary constriction included a flanking satellite and terminal region on the short arm of chromosome 8. Signals of the 18S–5.8S–26S rRNA gene in At30 showpd in only three chromosomes, indicating that one of the lost chromosomes was chromosome 8. Overall, three marker chromosomes were established by FISH, using rRNA multigene families.  相似文献   

14.
The Falkland’s mullet, Eleginops maclovinus, is the only modern representative of the Sub-Antarctic family Eleginopidae, suborder Notothenioidei. Based on specimens from the Falkland Islands/Islas Malvinas, the Magellan Straits, and the southern coast of Chile, we have established the specific karyotype by conventional cytogenetic methods and have mapped the chromosomal loci of the ribosomal genes by fluorescence in situ hybridization (FISH). With respect to the basal notothenioid family Bovichtidae and to the hypothetical basal condition of the suborder (diploid number = 48, fundamental number = 48), E. maclovinus displays a slightly derived karyotype (diploid number = 48, fundamental number = 54). In contrast to the bovichtids, the 45S and 5S ribosomal DNAs are co-localized to a single chromosome pair. Condensation of the ribosomal genes to a single locus is likely to represent an intermediate stage in the evolution of notothenioid karyology. Features unique to E. maclovinus (e.g., morphology of its large, rDNA-bearing chromosome pair) probably result from divergence during the long evolutionary isolation of the family.  相似文献   

15.
Sponges are among the most species‐rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model‐based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single‐copy nuclear protein‐coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax, C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera, C. longissima, C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model‐based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges.  相似文献   

16.
In the south-central Mediterranean four tetraploid species of Bellevalia occur: B. dolichophylla, B. galitensis, B. mauritanica, and B. pelagica. Another group of plants, morphologically similar to B. dolichophylla, has been recently recovered in Zembra Island (Tunisia). A phylogenetic reconstruction involving all these tetraploid taxa was performed using both plastidial and nuclear markers (trnL-trnF and ITS, respectively). For all these taxa, an allopolyploid origin involving B. romana and B. dubia is supported. Regarding plants from Zembra, they may fall within the variability of B. dolichophylla.  相似文献   

17.
A comparative chromosomal evaluation was carried out between Vigna unguiculata (cowpea) and V. radiata (mung bean) with chromomycin A3 (CMA3)/4’,6-diamidino-2-phenylindole (DAPI) banding and fluorescent in situ hybridization (FISH) using 5S/45S ribosomal DNA (rDNA) probes. Both species had symmetric karyotypes (2n = 22), with prevalence of centromeres in chromosomes at median (m) and submedian (sm) regions and chromosomes ranging in size from 2.1 to 1.25 μm (V. unguiculata) and 2.18 to 0.93 μm (V. radiata). Three different banding patterns were identified for V. unguiculata: CMA3+/DAPI0, CMA3++/DAPI, and CMA3+/DAPI. The CMA3+/DAPI0 bands were observed in the pericentromeric regions of all chromosomes, while the CMA3++/DAPI and CMA3+/DAPI bands were co-localized with the 45S rDNA in the subtelomeric position (chromosomes B, G, and D, J, respectively) and in the proximal position in chromosome F. Two pairs of chromosomes (D and I) bearing interstitial 5S rDNA have been also identified. Vigna radiata displayed CMA30/DAPI+ bands distributed in the centromeric region of chromosomes B, C, and F, while CMA3++/DAPI bands were co-localized with the 45S rDNA sites in the subtelomeric position of the short arm in the F and K chromosome pairs. Three pairs of 5S rDNA sites were identified, the first in the proximal region of the long arm in chromosome E and the two others in the proximal and subterminal positions in the long arm of chromosome J. These data highlight some divergences regarding the amount and composition of the heterochromatin in both species, allowing the identification of individual chromosomes in V. unguiculata and V. radiata, and a comparison with other members of the Phaseoloid clade.  相似文献   

18.
Boron A  Porycka K  Ito D  Abe S  Kirtiklis L 《Genetica》2009,135(2):199-207
A comparative molecular cytogenetic analysis was performed on three species of the genus Leuciscus viz. ide L. idus, chub L. cephalus and dace L. leuciscus distributed in Poland, using C-, Ag- and chromomycin A3 (CMA3)-stainings and fluorescence in situ hybridization (FISH) with 5.8S + 28S rDNA as a probe. Although the three species examined shared 2n = 50 chromosomes and the largest acrocentric chromosome pair in the complement, they were characterized with karyotypic differences in terms of the number of uni- and biarmed chromosomes and the localization of nucleolar organizer regions (NORs) revealed by Ag-staining and FISH. L. idus and L. cephalus showed the rDNA sites on the long arms of one submetacentric (SM) chromosome pair and on the short arms of one subtelocentric (ST) chromosome pair, respectively. These NORs were CMA3-positive, GC-rich and C-positive heterochromatic sites in both species. Such chromosome banding features were also true for four NORs localizing on one of each SM and ST pair in L. leuciscus, but considerable numerical NOR polymorphism became apparent with Ag-staining and FISH due to a different combination of these NOR-bearing SMs and STs in this dace. The present results indicate that the molecular cytogenetic analysis applied herein may become useful to elucidate the karyotype evolution and phylogenetic relationships among the species in the genus Leuciscus and other related groups.  相似文献   

19.
To clarify the evolutionary dynamics of ribosomal RNA genes (rDNAs) in the Byblis liniflora complex (Byblidaceae), we investigated the 5S and 45S rDNA genes through (1) chromosomal physical mapping by fluorescence in situ hybridization (FISH) and (2) phylogenetic analyses using the nontranscribed spacer of 5S rDNA (5S-NTS) and the internal transcribed spacer of 45S rDNA (ITS). In addition, we performed phylogenetic analyses based on rbcL and trnK intron. The complex was divided into 2 clades: B. aquaticaB. filifolia and B. guehoiB. linifloraB. rorida. Although members of the complex had conservative symmetric karyotypes, they were clearly differentiated on chromosomal rDNA distribution patterns. The sequence data indicated that ITS was almost homogeneous in all taxa in which two or four 45S rDNA arrays were frequently found at distal regions of chromosomes in the somatic karyotype. ITS homogenization could have been prompted by relatively distal 45S rDNA positions. In contrast, 2–12 5S rDNA arrays were mapped onto proximal/interstitial regions of chromosomes, and some paralogous 5S-NTS were found in the genomes harboring 4 or more arrays. 5S-NTS sequence type-specific FISH analysis showed sequence heterogeneity within and between some 5S rDNA arrays. Interlocus homogenization may have been hampered by their proximal location on chromosomes. Chromosomal location may have affected the contrasting evolutionary dynamics of rDNAs in the B. liniflora complex.  相似文献   

20.
Three ascosporogenous yeast strains were isolated from the gut of the passalid beetle, Odontotaenius disjunctus, inhabiting on rotten oak trees. DNA sequence comparison and other taxonomic characteristics identified the strains as a novel species in the genus Kazachstania. The name Kazachstania intestinalis sp. nov. (type strain EH085T = ATCC MYA-4658T = CBS 11839T) is proposed for the strains. The yeast is homothallic, producing persistent asci with 1–4 spheroidal ascospores. Molecular phylogeny from ribosomal RNA gene sequences placed this novel species on the basal lineage of a clade including Kazachstania lodderae, Kazachstania exigua, Kazachstania martiniae, and other related Kazachstania spp., but none of those species was a close sister to K. intestinalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号