首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high‐resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone.  相似文献   

2.
 Experimental studies of the upper thermal limits of corals from Orpheus Island, an inshore reef in the central Great Barrier Reef, show that Acropora formosa has a 5-day 50%-bleaching threshold of between 31 and 32 °C in summer, only 2 to 3 °C higher than local mean summer temperatures (29 °C). Summer bleaching thresholds for Pocillopora damicornis and A. elseyi were 1 °C higher (between 32 and 33 °C). The winter bleaching threshold of Pocillopora damicornis was 1 °C lower than its summer threshold, indicating that seasonal acclimatisation may take place. This seasonal difference raises the possibility that at least some corals may be capable of short-term thermal acclimatisation. Neither P. damicornis nor A. elseyi showed habitat-specific (reef flat versus reef slope) differences in bleaching thresholds. Further, colonies of P. damicornis collected from sites 3 km apart also showed no difference in bleaching threshold despite populations of this species responding differently at these two sites during a natural bleaching event. The bleaching thresholds determined in this study are best considered as the maximum tolerable temperatures for local populations of these species because they were determined in the absence of additional stressors (e.g. high light) which often co-occur during natural bleaching events. We consider the 5-day 50% bleaching thresholds determined in these experiments to be fair indicators of upper thermal limits, because >50% of a sample population died when allowed to recover in situ. We found a delay of up to a month in the bleaching response of corals following thermal stress, a result that has implications for identifying the timing of stressful conditions in natural bleaching events. Accepted: 26 May 1999  相似文献   

3.
Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming‐induced bleaching remains largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias‐corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the preindustrial period through 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a preindustrial climatology to the NOAA Coral Reef Watch bleaching prediction method overpredicts the present‐day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2–10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20–80% compared with the ‘no adaptive response’ prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high‐frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high‐frequency bleaching by ca. 10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and ocean basins to determine if and how much corals can respond to increasing thermal stress.  相似文献   

4.

Tropical Pacific sea surface temperature is projected to rise an additional 2–3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These “stress bands” are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in conservation efforts to identify temperature-tolerant coral reef communities.

  相似文献   

5.
Tropical reefs have been impacted by thermal anomalies caused by global warming that induced coral bleaching and mortality events globally. However, there have only been very few recordings of bleaching within the Red Sea despite covering a latitudinal range of 15° and consequently it has been considered a region that is less sensitive to thermal anomalies. We therefore examined historical patterns of sea surface temperature (SST) and associated anomalies (1982–2012) and compared warming trends with a unique compilation of corresponding coral bleaching records from throughout the region. These data indicated that the northern Red Sea has not experienced mass bleaching despite intensive Degree Heating Weeks (DHW) of >15°C‐weeks. Severe bleaching was restricted to the central and southern Red Sea where DHWs have been more frequent, but far less intense (DHWs <4°C‐weeks). A similar pattern was observed during the 2015–2016 El Niño event during which time corals in the northern Red Sea did not bleach despite high thermal stress (i.e. DHWs >8°C‐weeks), and bleaching was restricted to the central and southern Red Sea despite the lower thermal stress (DHWs < 8°C‐weeks). Heat stress assays carried out in the northern (Hurghada) and central (Thuwal) Red Sea on four key reef‐building species confirmed different regional thermal susceptibility, and that central Red Sea corals are more sensitive to thermal anomalies as compared to those from the north. Together, our data demonstrate that corals in the northern Red Sea have a much higher heat tolerance than their prevailing temperature regime would suggest. In contrast, corals from the central Red Sea are close to their thermal limits, which closely match the maximum annual water temperatures. The northern Red Sea harbours reef‐building corals that live well below their bleaching thresholds and thus we propose that the region represents a thermal refuge of global importance.  相似文献   

6.
Coral bleaching, during which corals lose their symbiotic dinoflagellates, appears to be increasing in frequency and geographic extent, and is typically associated with abnormally high water temperatures and solar irradiance. A key question in coral reef ecology is whether local stressors reduce the coral thermal tolerance threshold, leading to increased bleaching incidence. Using tree‐ring techniques, we produced master chronologies of growth rates in the dominant reef builder, massive Montastraea faveolata corals, over the past 75–150 years from the Mesoamerican Reef. Our records indicate that the 1998 mass bleaching event was unprecedented in the past century, despite evidence that water temperatures and solar irradiance in the region were as high or higher mid‐century than in more recent decades. We tested the influence on coral extension rate from the interactive effects of human populations and thermal stress, calculated here with degree‐heating‐months (DHM). We find that when the effects of chronic local stressors, represented by human population, are taken into account, recent reductions in extension rate are better explained than when DHM is used as the sole predictor. Therefore, the occurrence of mass bleaching on the Mesoamerican reef in 1998 appears to stem from reduced thermal tolerance due to the synergistic impacts of chronic local stressors.  相似文献   

7.
Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs – hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well‐timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region‐wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build‐up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995–2010), the annual probability that cooling and thermal stress co‐occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation.  相似文献   

8.
Coral bleaching and mortality are predicted to increase as climate change‐induced thermal‐stress events become more frequent. Although many studies document coral bleaching and mortality patterns, few studies have examined deviations from the expected positive relationships among thermal stress, coral bleaching, and coral mortality. This study examined the response of >30,000 coral colonies at 80 sites in Palau, during a regional thermal‐stress event in 2010. We sought to determine the spatial and taxonomic nature of bleaching and examine whether any habitats were comparatively resistant to thermal stress. Bleaching was most severe in the northwestern lagoon, in accordance with satellite‐derived maximum temperatures and anomalous temperatures above the long‐term averages. Pocillopora populations suffered the most extensive bleaching and the highest mortality. However, in the bays where temperatures were higher than elsewhere, bleaching and mortality were low. The coral‐community composition, constant exposure to high temperatures, and high vertical attenuation of light caused by naturally high suspended particulate matter buffered the corals in bays from the 2010 regional thermal‐stress event. Yet, nearshore reefs are also most vulnerable to land‐use change. Therefore, nearshore reefs should be given high conservation status because they provide refugia for coral populations as the oceans continue to warm.  相似文献   

9.
 Elevated temperatures and solar ultraviolet (UV) radiation have been implicated as recent causes for the loss of symbiotic algae (i.e., bleaching) in corals and other invertebrates with photoautotrophic symbionts. One hypothesized mechanism of coral bleaching involves the production of reduced oxygen intermediates, or toxic oxygen, in the dinoflagellate symbionts and host tissues that subsequently causes cellular damage and expulsion of symbionts. Measurements of photosynthesis in the Caribbean coral Agaricia tenuifolia, taken during temperature-induced stress and exposure to full solar radiation, showed a decrease in photosynthetic performance followed by bleaching. Exposure of corals to exogenous antioxidants that scavenge reactive oxygen species during temperature-induced stress improves maximum photosynthetic capacity to rates indistinguishable from corals measured at the ambient temperature of their site of collection. Additionally, these antioxidants prevent the coral from “ bleaching ” and affect the mechanism of symbiont loss from the coral host. These observations confirm a role for oxidative stress, whether caused by elevated temperatures or exposure to UV radiation, in the bleaching phenomenon. Accepted: 18 October 1996  相似文献   

10.
Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will respond in future, ocean warming scenarios.  相似文献   

11.
The rapid growth of scleractinian corals is responsible for the persistence of coral reefs through time. Coral growth rates have declined over the past 30 years in the western Pacific, Indian, and North Atlantic Oceans. The spatial scale of this decline has led researchers to suggest that a global phenomenon like ocean acidification may be responsible. A multi-species inventory of coral growth from Pacific Panamá confirms that declines have occurred in some, but not all species. Linear extension declined significantly in the most important reef builder of the eastern tropical Pacific, Pocillopora damicornis, by nearly one-third from 1974 to 2006. The rate of decline in skeletal extension for P. damicornis from Pacific Panamá (0.9% year−1) was nearly identical to massive Porites in the Indo-Pacific over the past 20–30 years (0.89–1.23% year−1). The branching pocilloporid corals have shown an increased tolerance to recurrent thermal stress events in Panamá, but appear to be susceptible to acidification. In contrast, the massive pavonid corals have shown less tolerance to thermal stress, but may be less sensitive to acidification. These differing sensitivities will be a fundamental determinant of eastern tropical Pacific coral reef community structure with accelerating climate change that has implications for the future of reef communities worldwide.  相似文献   

12.
The Phoenix Islands (Republic of Kiribati, 172–170°W and 2.5–5°S) experience intra- and inter-annual sea surface temperature variability of ≈2°C and have few local anthropogenic impacts. From July 2002, a thermal stress event occurred, which peaked at 21 Degree Heating Weeks (DHW) in January 2003 and persisted for 4 years. Such thermal stress was greater than any thermal event reported in the coral reef literature. Reef surveys were conducted in July 2000, June 2002, and May 2005, for six of the eight islands. Sampling was stratified by exposure (windward, leeward, and lagoon) and depth (5, 10, 15, and 25 m). The thermal stress event caused mass coral mortality, and coral cover declined by approximately 60% between 2002 and 2005. However, mortality varied among sites (12–100%) and among islands (42–79%) and varied in accordance with the presence of a lagoon, island size, and windward vs. leeward exposure. Leeward reefs experienced the highest and most consistent decline in coral cover. Island size and the presence of a lagoon showed positive correlations with coral mortality, most likely because of the longer water residence time enhancing heating. Windward reefs showed cooler conditions than leeward reefs. Recently dead corals were observed at depths >35 m on windward and >45 m on leeward reefs. Between-island variation in temperature had no effect on between-island variation in coral mortality. Mortality levels reported here were comparable to those reported for the most extreme thermal stress events of 9–10 DHW in other regions. These results highlight the high degree of acclimation and/or adaptation of the corals in the Phoenix Islands to their local temperature regime, and their consequent vulnerability to anomalous events. Moreover, the results suggest the need to adjust thermal stress calculations to reflect local temperature variation.  相似文献   

13.
Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef‐building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long‐term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere–ocean general circulation models (GCMs) to the local conditions around representative coral reefs. Here, we conduct the first comprehensive global assessment of coral bleaching under climate change by adapting the NOAA Coral Reef Watch bleaching prediction method to the output of a low‐ and high‐climate sensitivity GCM. First, we develop and test algorithms for predicting mass coral bleaching with GCM‐resolution sea surface temperatures for thousands of coral reefs, using a global coral reef map and 1985–2002 bleaching prediction data. We then use the algorithms to determine the frequency of coral bleaching and required thermal adaptation by corals and their endosymbionts under two different emissions scenarios. The results indicate that bleaching could become an annual or biannual event for the vast majority of the world's coral reefs in the next 30–50 years without an increase in thermal tolerance of 0.2–1.0°C per decade. The geographic variability in required thermal adaptation found in each model and emissions scenario suggests that coral reefs in some regions, like Micronesia and western Polynesia, may be particularly vulnerable to climate change. Advances in modelling and monitoring will refine the forecast for individual reefs, but this assessment concludes that the global prognosis is unlikely to change without an accelerated effort to stabilize atmospheric greenhouse gas concentrations.  相似文献   

14.
Thermal‐stress events that cause coral bleaching and mortality have recently increased in frequency and severity. Yet few studies have explored conditions that moderate coral bleaching. Given that high light and high ocean temperature together cause coral bleaching, we explore whether corals at turbid localities, with reduced light, are less likely to bleach during thermal‐stress events than corals at other localities. We analyzed coral bleaching, temperature, and turbidity data from 3,694 sites worldwide with a Bayesian model and found that Kd490, a measurement positively related to turbidity, between 0.080 and 0.127 reduced coral bleaching during thermal‐stress events. Approximately 12% of the world's reefs exist within this “moderating turbidity” range, and 30% of reefs that have moderating turbidity are in the Coral Triangle. We suggest that these turbid nearshore environments may provide some refuge through climate change, but these reefs will need high conservation status to sustain them close to dense human populations.  相似文献   

15.
Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral–algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to ‘bleaching’ (stress‐induced symbiosis breakdown), but stress‐tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress‐sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress‐tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3‐dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post‐bleaching resulted from symbiont community composition changes, not prior heat exposure. Moreover, initially undetectable D1a symbionts became dominant only after bleaching, and were critical to corals' resilience after stress and resistance to future stress.  相似文献   

16.
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light‐dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching‐related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30–75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs.  相似文献   

17.
Nubbins of the coral Acropora aspera were artificially bleached and nitrogen fixation (acetylene reduction) rates were measured on the developing epilithic communities. Seasonal comparisons were made between corals that died in summer of heat stress and corals that died in winter from natural cold stress. Rates of acetylene reduction from artificially bleached corals peaked at 26.66 nmol cm−2 h−1 2 weeks after summer mortality, while rates from natural winter mortality peaked at 18.07 nmol cm−2 h−1 12 days after coral death. Comparative rates of acetylene reduction taken from live corals and coral rubble ranged between 0.56 and 1.16 nmol cm−2 h−1, and 0.15 and 12.77 nmol cm−2 h−1, respectively. N2-fixation rates from dead corals were up to 30 times greater than those measured on live corals. The observed increase in N2-fixation from dead corals may increase the availability of nitrogen for use in trophic processes within the reef for an extended period following the initial mortality event. If the spatial scale over which coral mortality has occurred in past thermal bleaching events is considered the ramifications of such an increase may be substantial.  相似文献   

18.
 Much recent attention has been given to coral reef bleaching because of its widespread occurrence, damage to reefs, and possible connection to global change. There is still debate about the relationship between temperature and widespread bleaching. We compared coral reef bleaching at La Parguera, Puerto Rico to a 30-y (1966–1995) record of sea surface temperature (SST) at the same location. The last eight years of the La Parguera SST record have all had greater than average maximum temperatures; over the past 30 y maximum summer temperature has increased 0.7 °C. Coral reef bleaching has been particularly frequent since the middle 1980s. The years 1969, 1987, 1990, and 1995 were especially noteworthy for the severity of bleaching in Puerto Rico. Seven different annual temperature indices were devised to determine the extent to which they could predict severe coral bleaching episodes. Three of these, maximum daily SST, days >29.5 °C, and days >30 °C predict correctly the four years with severe bleaching. A log-log linear relationship was found between SST and the number of days in a given year above that SST at which severe coral beaching was observed. However, the intra-annual relationship between temperature and the incidence of bleaching suggests that no one simple predictor of the onset of coral bleaching within a year may be applicable. Accepted: 17 March 1998  相似文献   

19.
In January–May 2006, Heron Island in the Great Barrier Reef experienced a mild bleaching event. The effect of colony size, morphology and surrounding substrate on the extent of bleaching was explored. In contrast with previous studies, colony size did not influence bleaching sensitivity, suggesting that there may be a threshold of light and temperature stress beyond which size plays a role. Also contrasting with previous studies, massive corals were more affected by bleaching than branching corals. Massive corals surrounded by sand were more affected than the ones surrounded by rubble or dead coral. It is hypothesized that light reflectance from sand increases stress levels experienced by the colonies. This effect is maximized in massive corals as opposed to branching corals that form dense thickets on Heron Island. These results emphasize the importance of the ecological dynamics of coral communities experiencing low, moderate and high levels of bleaching for the understanding of how coral communities may change under the stress of climate change.  相似文献   

20.
Elevated sea surface temperatures caused by global climate change and increased nutrient concentrations resulting from land runoff both are stressors for calcifying coral reef organisms. Here, we test the hypothesis that increased temperature leads to bleaching in dinoflagellate-bearing foraminifera similar to corals and that increased nutrients through runoff can exaggerate stress on the holobiont. In an experiment manipulating temperatures alone, we have shown that mortality of Marginopora vertebralis increased with temperatures. Most individuals died after 7 days at 34°C, ~5°C above current summer maxima. Survival at 37 days was >98% at 28°C. After 7 days of exposure to 31 or 32°C, photosynthesis of the endosymbionts was compromised, as indicated by several photophysiological parameters (effective quantum yield and apparent photosynthetic rate). In a flow-though experiment manipulating both temperature (three levels, 26, 29 and 31°C) and nitrate concentrations (3 levels, ~0.5, 1.0 and 1.4 μmol l−1 NO3 ), elevated temperature had a significant negative effect on most parameters measured. At 31°C, most photopigments (measured by UPLC) in the foraminifera were significantly reduced. The only pigment that increased was the photoprotective diatoxanthin. Several other parameters measured (maximum and effective quantum yield, O2 production in light, organic carbon contents) also significantly decreased with temperature. Optode-based respirometry demonstrated that the presence of symbionts at elevated temperatures represents a net carbon loss for the host. Growth rates of M. vertebralis and mortality at the end of the experiment were significantly affected by both temperature increase and nitrate addition. We conclude that these foraminifera bleach in a similar fashion to corals and that global sea surface temperature change and nitrate increases are stressors for these protists. Furthermore, this provides support for the hypothesis that management of local stressors elevates resilience of coral reefs to global stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号