首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Two repeated DNA sequences, pHaS13 and pHaS211, which revealed similarity to the int gene of Ty3-gypsy retrotransposons and the RNAse-H gene of Ty1-copia retroelements, respectively, were surveyed in Asteraceae species and within the genus Helianthus. Southern analysis of the genome of selected Asteraceae that belong to different tribes showed that pHaS13- and pHaS211-related subfamilies of gypsy- and copia-like retroelements are highly redundant only in Helianthus and, to a lesser extent, in Tithonia, a Helianthus strict relative. However, under low stringency posthybridization washes, bands were observed in almost all the other Asteraceae tested when pHaS13 was used as a probe, and in several species when pHaS211 was hybridized. FISH analysis of pHaS13 or pHaS211 probes was performed in species in which labelling was observed in Southern hybridizations carried out under high stringency conditions (Helianthus annuus, Tithonia rotundifolia, Ageratum spp., Leontopodium spp., Senecio vulgaris for pHaS13, and H. annuus, Tithonia rotundifolia, and S. vulgaris for pHaS211). Scattered labelling was observed over all metaphase chromosomes, indicating a large dispersal of both Ty3-gypsy- and Ty1-copia-like retroelements. However, preferential localization of Ty3-gypsy-like sequences at centromeric chromosome regions was observed in all of the species studies but one, even in species in which pHaS13-related elements are poorly represented. Ty1-copia-like sequences showed preferential localization at the chromosome ends only in H. annuus. To study the evolution of gypsy- and copia-like retrotransposons in Helianthus, cladograms were built based on the Southern blot hybridization patterns of pHaS13 or pHaS211 sequences to DNA digests of several species of this genus. Both cladograms agree in splitting the genomes studied into annuals and perennials. Differences that occurred within the clades of perennial and annual species between gypsy- and copia-like retroelements indicated that these retrotransposons were differentially active during Helianthus speciation, suggesting that the evolution of the 2 retroelement families was, within limits, independent.  相似文献   

4.
5.
Because of their compact genomes, retroelements (including retrotransposons and retroviruses) employ a variety of translational recoding mechanisms to express Gag and Pol. To assess the diversity of recoding strategies, we surveyed gag/pol gene organization among retroelements from diverse host species, including elements exhaustively recovered from the genome sequences of Caenorhabditis elegans, Drosophila melanogaster, Schizosaccharomyces pombe, Candida albicans, and Arabidopsis thaliana. In contrast to the retroviruses, which typically encode pol in the -1 frame relative to gag, nearly half of the retroelements surveyed encode a single gag-pol open reading frame. This was particularly true for the Ty1/copia group retroelements. Most animal Ty3/gypsy retroelements, on the other hand, encode gag and pol in separate reading frames, and likely express Pol through +1 or -1 frameshifting. Conserved sequences conforming to slippery sites that specify viral ribosomal frameshifting were identified among retroelements with pol in the -1 frame. None of the plant retroelements encoded pol in the -1 frame relative to gag; however, two closely related plant Ty3/gypsy elements encode pol in the +1 frame. Interestingly, a group of plant Ty1/copia retroelements encode pol either in a +1 frame relative to gag or in two nonoverlapping reading frames. These retroelements have a conserved stem-loop at the end of gag, and likely express pol either by a novel means of internal ribosomal entry or by a bypass mechanism.  相似文献   

6.
7.
8.
9.
10.
Long terminal retrotransposons are major components of eukaryotic transposable elements. We have surveyed the long terminal repeats (LTR) retrotransposons of domesticated silkworm (Bombyx mori) by mining the data produced by Bombyx mori Genome Sequencing Project. At least 29 separate families of LTR retrotransposons are identified in this survey, comprising of 11.8% of the complete sequence. Families of domesticated silkworm LTR retrotransposons can be mainly classified into three groups: gypsy-like, copia-like, Pao-Bel. Fourteen families identified consist of gypsy-like elements, four families consist of copia-like elements and seven families consist of Pao-Bel elements. In addition to the three groups of LTR retrotransposons, two families of unusual non-coding elements are identified in the genome of this species. Further phylogenetic analysis of RT domain indicates that the elements of B.mori show high diversity and can form different clades in each group. An analysis of sequence variation from different families reveals distinct patterns of variation for the elements belonging to three groups. The analysis of the domesticated silkworm LTR retrotransposons should assist in our understanding of the roles of retroelement in lepidopteron insect genome evolution.  相似文献   

11.
12.
13.
Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.  相似文献   

14.
Cassava (Manihot esculenta Crantz), though a major world crop with enormous potential, is very under studied. Little is known about its genome structure and organisation. Transposable elements have a key role in the evolution of genome structure, and can be used as important tools in applied genetics. This paper sets out to survey the diversity of members of three major classes of transposable element within the cassava genome and in relation to similar elements in other plants. Members of two classes of LTR-retrotransposons, Ty1/copia-like and Ty3/gypsy-like, and of Enhancer/Suppressor Mutator (En/Spm)-like transposons were isolated and characterised. Analyses revealed 59 families of Ty1/copia, 26 families of Ty3/gypsy retrotransposons, and 40 families of En/Spm in the cassava genome. In the comparative analyses, the predicted amino acid sequences for these transposon classes were compared with those of related elements from other plant species. These revealed that there were multiple lineages of Ty1/copia-like retrotransposons in the genome of cassava and suggested that vertical and horizontal transmission as the source of cassava Mecops may not be mutually exclusive. For the Ty3/gypsy elements network, two groups of cassava Megyps were evident including the Arabidopsis Athila lineage. However, cassava En/Spm-like elements (Meens) constituted a single group within a network of plant En/Spm-like elements. Hybridisation analysis supported the presence of transposons in the genome of cassava in medium (Ty3/gypsy and En/Spm) to high (Ty1/copia) copy numbers. Thus the cassava genome was shown to contain diverse members of three major classes of transposable element; however, the different classes exhibited contrasting evolutionary histories.  相似文献   

15.
16.
Sarri V  Ceccarelli M  Cionini PG 《Génome》2011,54(5):431-435
Clones containing tandemly arranged repeats belonging to two distinct sequence families, (i) PAG004P22F (2F) and PAG004E03C (3C) or (ii) Ty3/gypsy- (8R; PAG004B08R) and Ty1/copia-like sequences (9R; PAG007F19R), were selected from a randomly sheared total genomic DNA library of Picea abies . The inserts were used as probes in dot-blot hybridizations to genomic DNA of P. abies, Picea orientalis , Picea pungens , and Picea pungens var. glauca. All these entities are diploid and share the same chromosome number (2n = 24), but the genome sizes differ largely. The redundancy (copy number per 1C DNA) of sequences related to each probe varied greatly between the genomes. No significant correlation was found between the genome size and the copy number of sequences in any family. The quantitative ratios varied greatly (in each genome) between the two families of satellite DNA, between the sequences that represented copia or gypsy retrotransposons, and between tandemly arranged sequences and retroelements as a whole, suggesting that there is no common factor that controls the quantitative evolution of repeats belonging to different sequence families during speciation in Picea.  相似文献   

17.
18.
Transposable elements contribute significantly to plant genome evolution in myriad ways, ranging from local insertional mutations to global effects exerted on genome size through accumulation. Differential accumulation and deletion of transposable elements may profoundly affect genome size, even among members of the same genus. One example is that of Gossypium (cotton), where much of the 3-fold genome size variation is due to differential accumulation of one gypsy-like LTR retrotransposon, Gorge3. Copia and non-LTR LINE retrotransposons are also major components of the Gossypium genome, but unlike Gorge3, their extant copy numbers do not correlate with genome size. In the present study, we describe the nature and timing of transposition for copia and LINE retrotransposons in Gossypium. Our findings indicate that copia retrotransposons have been active in each lineage since divergence from a common ancestor, and that they have proliferated in a punctuated manner. However, the evolutionary history of LINEs contrasts markedly with that of the copia retrotransposons. Although LINEs have also been active in each lineage, they have accumulated in a stochastically regular manner, and phylogenetic analysis suggests that extant LINE populations in Gossypium are dominated by ancient insertions. Interestingly, the magnitude of transpositional bursts in each lineage corresponds directly with extant estimated copy number.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号