首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The formation of collagen fibrils, fibril bundles, and tissue-specific collagen macroaggregates by chick embryo tendon fibroblasts was studied using conventional and high voltage electron microscopy. During chick tendon morphogenesis, there are at least three extracellular compartments responsible for three levels of matrix organization: collagen fibrils, bundles, and collagen macroaggregates. Our observations indicate that the initial extracellular events in collagen fibrillogenesis occur within narrow cytoplasmic recesses, presumably under close cellular regulation. Collagen fibrils are formed within these deep, narrow recesses, which are continuous with the extracellular space. Where these narrow recesses fuse with the cell surface, it becomes highly convoluted with folds and processes that envelope forming fibril bundles. The bundles laterally associate and coalesce, forming aggregates within a third cell-defined extracellular compartment. Our interpretation is that this third compartment forms as cell processes retract and cytoplasm is withdrawn between bundles. These studies define a hierarchical organization within the tendon, extending from fibril assembly to fascicle formation. Correlation of different levels of extracellular compartmentalization with tissue architecture provides insight into the cellular controls involved in collagen fibril and higher order assembly and a better understanding of how collagen fibrils are collected into structural groups, positioned, and woven into functional tissue-specific collagen macroaggregates.  相似文献   

2.
The hierarchy of extracytoplasmic compartmentalization and fibrillar organization as well as the assembly and deposition of collagen fibrils was characterized in the 15-day chick embryo dermis using transmission electron microscopy. At least two levels of extracellular compartmentalization are recognizable at this stage of dermal development. The first compartment consists of a series of narrow channels containing single or small groups (less than 5) of collagen fibrils. These channels course deep within the cell and are open to the extracellular space. The second extracellular compartment consists of fibrils grouped as small bundles in close association with the cell surface and is most often defined by a single fibroblast. A third level of fibril organization and compartmentalization is sometimes apparent at this stage of dermal development consisting of laterally associated bundles, more characteristic of the mature dermis. This compartment is associated with the fibroblast surface, but is less well defined than the fibril channels or bundle-forming compartments. Dermal collagen fibrils within bundles are discontinuous. Numerous fibrils ends are identified from serial sections and the ends gradually taper. These data indicate that the dermal fibroblast compartmentalizes the extracellular space and deposits collagen fibril segments during dermal morphogenesis. A model for the genesis of the extracellular compartments and their role in collagen fibrillogenesis and development of regularly arranged connective tissues, tendon, and cornea has been proposed. Dermal development conforms to this model and we suggest that extracytoplasmic compartmentalization of the steps in matrix assembly and segmental deposition of collagen fibrils are important mechanisms in the development of a wide variety of connective tissues.  相似文献   

3.
Extracellular matrix assembly is a multistep process and the various steps in collagen fibrillogenesis are thought to be influenced by a number of factors, including other noncollagenous matrix molecules. The synthesis and deposition of extracellular matrix by corneal fibroblasts grown within three-dimensional collagen gel cultures were examined to elucidate the factors important in the establishment of tissue-specific matrix architecture. Corneal fibroblasts in collagen gel cultures form layers and deposit small-diameter collagen fibrils (approximately 25 nm) typical of the mature corneal stroma. The matrix synthesized contains type VI collagen in a filamentous network and type I and type V collagen assembled as heterotypic fibrils. The amount of type V collagen synthesized is relatively high and comparable to that seen in the corneal stroma. This matrix is deposited between cell layers in a manner reminiscent of the secondary corneal stroma, but is not deposited as densely or as organized as would be found in situ. No keratan sulfate proteoglycan, a proteoglycan found only in the corneal stroma, was synthesized by the fibroblasts in the collagen gel cultures. The assembly and deposition of small-diameter fibrils with a collagen composition and structure identical to that seen in the corneal stroma in the absence of proteoglycans typical of the secondary corneal stroma imply that although proteoglycan-collagen interactions may function in the establishment of interfibrillar spacing and lamellar organization, collagen-collagen interactions are the major parameter in the regulation of fibril diameter.  相似文献   

4.
Tendons are composed of longitudinally aligned collagen fibrils arranged in bundles with an undulating pattern, called crimp. The crimp structure is established during embryonic development and plays a vital role in the mechanical behaviour of tendon, acting as a shock-absorber during loading. However, the mechanism of crimp formation is unknown, partly because of the difficulties of studying tendon development in vivo. Here, we used a 3D cell culture system in which embryonic tendon fibroblasts synthesise a tendon-like construct comprised of collagen fibrils arranged in parallel bundles. Investigations using polarised light microscopy, scanning electron microscopy and fluorescence microscopy showed that tendon constructs contained a regular pattern of wavy collagen fibrils. Tensile testing indicated that this superstructure was a form of embryonic crimp producing a characteristic toe region in the stress–strain curves. Furthermore, contraction of tendon fibroblasts was the critical factor in the buckling of collagen fibrils during the formation of the crimp structure. Using these biological data, a finite element model was built that mimics the contraction of the tendon fibroblasts and monitors the response of the Extracellular matrix. The results show that the contraction of the fibroblasts is a sufficient mechanical impulse to build a planar wavy pattern. Furthermore, the value of crimp wavelength was determined by the mechanical properties of the collagen fibrils and inter-fibrillar matrix. Increasing fibril stiffness combined with constant matrix stiffness led to an increase in crimp wavelength. The data suggest a novel mechanism of crimp formation, and the finite element model indicates the minimum requirements to generate a crimp structure in embryonic tendon.  相似文献   

5.
The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both collagens are codistributed within the same fibril. Type I collagen was localized to striated fibrils throughout the corneal stroma homogeneously. Type V collagen could be localized only after pretreatment of the tissue to partially disrupt collagen fibril structure. After such pretreatments the type V collagen was found in regions where fibrils were partially dissociated and not in regions where fibril structure was intact. When pretreated tissues were double labeled with antibodies against types I and V collagen coupled to different size gold particles, the two collagens colocalized in areas where fibril structure was partially disrupted. Antibodies against type IV collagen were used as a control and were nonreactive with fibrils. These results indicate that collagen types I and V are assembled together within single fibrils in the corneal stroma such that the interaction of these collagen types within heterotypic fibrils masks the epitopes on the type V collagen molecule. One consequence of the formation of such heterotypic fibrils may be the regulation of corneal fibril diameter, a condition essential for corneal transparency.  相似文献   

6.
Summary Corneal fibroblasts, major cellular components of the corneal stroma, are loosely arrayed between collagen lamellae. They play an important role in the metabolic and physiological homeostasis mechanisms by which the cornea is kept transparent. This paper deals with the demonstration of the gap junctions between the corneal fibroblasts of rabbits by transmission electron microscopy of thin sections and of freeze-fracture specimens. Under the transmission electron microscope, the corneal fibroblasts are seen between the lamellae of collagen fibers of the corneal stroma. Their long cytoplasmic processes are in contact with those of neighboring fibroblasts. Typical gap junctions are found between these cytoplasmic processes. In the freeze-fracture images, intramembrane particles with a diameter of 10.3 nm form polygonal aggregates on P faces. These findings suggest that corneal fibroblasts, coupled with each other, might function synchronously through gap junctions responsible for metabolic activities essential for the maintenance of corneal transparency.A part of this study was published in Kinki Daigaku Igaku Zasshi in Japanese as the thesis for Atsuko Ueda, M.D. This study was supported in part by a grant from the Ministry of Education, Science and Culture of Japan, from Osaka Eye Bank, Osaka, Japan, and from an intramural research fund of Kinki University  相似文献   

7.
Corneal stroma contains an extracellular matrix of orthogonal lamellae formed by parallel and equidistant fibrils with a homogeneous diameter of ∼35 nm. This is indispensable for corneal transparency and mechanical functions. However, the mechanisms controlling corneal fibrillogenesis are incompletely understood and the conditions required for lamellar stacking are essentially unknown. Under appropriate conditions, chick embryo corneal fibroblasts can produce an extracellular matrix in vitro resembling primary corneal stroma during embryonic development. Among other requirements, cross-links between fibrillar collagens, introduced by tissue transglutaminase-2, are necessary for the self-assembly of uniform, small diameter fibrils but not their lamellar stacking. By contrast, the subsequent lamellar organization into plywood-like stacks depends on lysyl aldehyde-derived cross-links introduced by lysyl oxidase activity, which, in turn, only weakly influences fibril diameters. These cross-links are introduced at early stages of fibrillogenesis. The enzymes are likely to be important for a correct matrix deposition also during repair of the cornea.  相似文献   

8.
The corneal stroma of the chick embryo is deposited in two steps. The primary stroma is laid down by the corneal epithelium and it contains type I, type II and type IX collagens. Its formation is subsequent to the presumptive epithelial cells' migration onto the lens capsule (which is rich in type IV collagen). The secondary, ultimate stroma is synthesized by fibroblasts whcih, on day 5 of development, invade the swollen primary stroma. It is composed of a matrix of thin (25 nm), regular fibrils containing type I and type V collagens.We found that a chick corneal epithelium isolated from either a 6-day or a 14-day embryo was able to produce, in vitro, stroma-containing type I collagen fibrils. However, the amount of collagen deposited and its organization were highly dependent on the substratum used. Plastic or purified bovine type I collagen substrata led to the release of very few fibrils. Purified human type IV collagen induced the production of an abundant matrix made of large irregular collagen fibrils.When compared to native corneal stroma, there were two aspects in which this matrix differed: (1) it contained only type I collagen, as shown by indirect immunofluorescence, and (2) there were numerous large, irregular fibrils of about 100 to 130 nm in diameter.In conclusion, it is suggested that purified type IV collagen substitutes, in part, for the basement membrane and allows the production of a corneal stroma-like matrix by an embryonic corneal epithelium in culture. This production is possible even with a 14-day epithelium which, in vivo, is no more involved in the synthesis of the stroma collagens. Moreover, the regulatory effect of type II collagen, previously suggested by in vivo observations, may be confirmed in this in vitro system by the appearance of large fibrils in the newly deposited stroma that are made only by type I collagen.  相似文献   

9.
The ability of tendon to transmit forces from muscle to bone is directly attributable to an extracellular matrix (ECM) containing parallel bundles of collagen fibrils. Although the biosynthesis of collagen is well characterized, how cells deposit the fibrils in regular parallel arrays is not understood. Here we show that cells in the tendon mesenchyme are nearly cylindrical and are aligned side by side and end to end along the proximal-distal axis of the limb. Using three-dimensional reconstruction electron microscopy, we show that the cells have deep channels in their plasma membranes and contain bundles of parallel fibrils that are contiguous from one cell to another along the tendon axis. A combination of electron microscopy, microarray analysis, and immunofluorescence suggested that the cells are held together by cadherin-11-containing cell-cell junctions. Using a combination of RNA interference and electron microscopy, we showed that knockdown of cadherin-11 resulted in cell separation, loss of plasma membrane channels, and misalignment of the collagen fibrils in the ECM. Our results show that tendon formation in the developing limb requires precise regulation of cell shape via cadherin-11-mediated cell-cell junctions and coaxial alignment of plasma membrane channels in longitudinally stacked cells.  相似文献   

10.
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.  相似文献   

11.
Full thickness rabbit skin explants were cultured on plastic dish for 1 week and the sequential morphological changes were examined daily by light and electron microscopy. During the cultured period, bundles of dermal collagen fibres gradually loosened and were removed from the upper dermis and from the cut margin of the explant, which was covered by a sheet of migrating epidermal cells. In these areas, cells containing phagocytosed collagen fibrils were observed from the 3rd day to the end of the culture period. These cells containing phagocytosed collagen fibrils included dermal fibroblasts and macrophages, epidermal keratinocytes and endothelial cells lining blood vessels. The presence of acid phosphatase activity in vacuoles containing the collagen fibrils suggested that intracellular degradation of collagen was occurring. In addition, extracellular collagen degradation was recognized around fibroblasts and beneath the migrating epidermis by the high collagenolytic activity at these sites. These findings suggest that both intra- and extracellular collagen degradation may participate in collagen removal from dermal connective tissue in cultured skin explants.  相似文献   

12.
The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen fibrils regularly spaced by a three-dimensional, irregular network of thin, delicate proteoglycan filaments. Rat tail tendon, observed under identical conditions, appears instead made of heterogeneous, closely packed fibrils interwoven with orthogonal proteoglycan filaments. Pre-treatment with cupromeronic blue just thickens the filaments without affecting their spatial layout. Digestion with chondroitinase ABC rids the tendon matrix of all its interconnecting filaments while the corneal stroma architecture remains virtually unaffected, its fibrils always being separated by an evident interfibrillar spacing which is never observed in tendon. Our observations indicate that matrix proteoglycans are responsible for both the highly regular interfibrillar spacing which is distinctive of corneal stroma, and the strong interfibrillar binding observed in tendon. These opposite interaction patterns appear to be distinctive of different proteoglycan species. The molecular details of proteoglycan interactions are still incompletely understood and are the subject of ongoing research.  相似文献   

13.
The present study traces corneal morphogenesis in a reptile, the lizard Calotes versicolor, from the lens placode stage (stage 24) until hatching (stage 42), and in the adult. The corneal epithelium separates from the lens placode as a double layer of peridermal and basal cells and remains bilayered throughout development and in the adult. Between stages 32– and 33+, the corneal epithelium is apposed to the lens, and limbic mesodermal cells migrate between the basement membrane of the epithelium and the lens capsule to form a monolayered corneal endothelium. Soon thereafter a matrix of amorphous ground substance and fine collagen fibrils, the presumptive stroma, is seen between the epithelium and the endothelium. Just before stage 34 a new set of limbic mesodermal cells, the keratocytes, migrate into the presumptive stroma. Migrating limbic mesodermal cells, both endothelial cells and keratocytes, use the basement membrane of the epithelium as substratum. Keratocytes may form up to six cell layers at stage 37, but in the adult stroma they form only one or two cell layers. The keratocytes sysnthesize collagen, which aggregates as fibrils and fibers organized in lamellae. The lamellae become condensed as dense collagen layers subepithelially or become compactly organized into a feltwork structure in the rest of the stroma. The basement membrane of the endothelium is always thin. Thickness of the entire cornea increases up to stage 38 and decreases thereafter until stage 41. In the adult the cornea is again nearly as thick as at stage 38.  相似文献   

14.
Fibroblasts are responsible for the synthesis, assembly, deposition, and organization of extracellular matrix molecules, and thus determine the morphology of connective tissues. Deposition of matrix molecules occurs in extracellular compartments, where the sequential stages are under cellular control. Cell orientation/polarity is important in determining how the cell orients these extracytoplasmic compartments and therefore how the matrix is assembled and oriented. However, the control of cell orientation is not understood. Fibroblasts from three tissues with different morphologies were studied to determine whether cells maintained their characteristic phenotype. Fibroblasts from cornea, which in vivo are oriented in orthogonal layers along with their matrix; from tendon, a uniaxial connective tissue, where cells orient parallel to each other; and from dermis, a connective tissue with no apparent cellular orientation, were used to study cell morphology and orientation in three-dimensional collagen gels. The different cells were grown for 3 and 7 days in identical three-dimensional collagen gels with a nonoriented matrix. Confocal fluorescence microscopy demonstrated that corneal fibroblasts oriented perpendicular to one another at 3 days, and after 7 days in hydrated gels these cells formed orthogonal sheets. Tendon fibroblasts were shown by the same methods to orient parallel to one another in bundles at both 3 and 7 days, throughout the depth of the gel. Dermal fibroblasts showed no apparent orientation throughout the hydrated gels at either time point examined. The organization of these different cell types was consistent with their tissue of origin as was the cell structure and polarity. These studies imply that cellular and tissue phenotype is innate to differentiated fibroblasts and that these cells will orient in a tissue-specific manner regardless of the extracellular matrix present.  相似文献   

15.
M I Cho  P R Garant 《Acta anatomica》1985,121(4):205-215
The administration of colchicine disrupts the normal organization of the Golgi complex and blocks the secretion of collagen precursors in periodontal ligament fibroblasts of the mouse. The fate of the unsecreted collagen precursors contained in Golgi-derived saccules and newly formed dense bodies was followed by electron microscopy. A progressive condensation of saccule content along with phase separation of electron-dense and electron-lucent material was observed. Fusion of saccules with dense secretory bodies gave rise to larger inclusions (zebra bodies; ZB) filled with a combination of electron-dense and electron-lucent material. In some ZB, these materials appeared to polymerize into fibrillar units. The fibrillar units stained with silver methenamine like normal collagenous fibrils. These results suggest that unsecreted collagen precursors accumulate in vesicular compartments within which partial polymerization can occur. This finding may explain some reports of intracellular collagenous fibrils in fibroblasts of pathologically altered connective tissues.  相似文献   

16.
Transmission and scanning electron microscopic studies demonstrate the stimulatory effect of synthetic salmon calcitonin on the fine structure of fibroblasts and on collagen formation in cutaneous wounds experimentally induced in rabbits. Long-term administration of calcitonin enhances fibroblast growth and collagen synthesis. The fibroblasts hypertrophy and exhibit a highly developed rough endoplasmic reticulum (RER), several polyribosomes, large nuclei, hypertrophic Golgi complex, and many dense granules and lysosomes. Mitochondria are elongate and ramify; intracellular as well as extracellular synthesis of collagen increases. Fibrils appear tightly packed, in large heaps or spicula, with a characteristic periodicity and striation. Scanning electron micrographs of topography and relationships with collagen fibers and fibrils and cells surface changes demonstrate an extensive network of fine fibrils between collagen fibers, marked ruffling of cell membranes as well as numerous blebs on the cell surface. The latter are significant in collagen formation and egestion.  相似文献   

17.
Pole figures of optic and morphological structures of rabbit corneal stroma have been determined. The birefringence of stroma is non-uniform, but tends to increase in the directions of nose to ear and of periphery to the vertex. There is no obvious symmetry in the local optic axes. Its direction changes from limbus to limbus. Small angle laser scattering showed stroma to have sheaf-like morphology. This texture is consistent with bundles of collagen fibrils which divide and anastomose. The average size of the scattering entities in rabbit corneal stroma is 19–23 μm with sector angles β ranging from 1 to 15°.  相似文献   

18.
Fibroblasts invade the primary corneal stroma of the 6-day-old chick embryo eye. The way in which these cells build the secondary stroma has been studied by microscope examination of the stroma during the subsequent 8 Days. Eyes were embedded in low viscosity nitrocellulose, and 30-micrometer tangential sections of cornea were cut and stained with azan (giving blue collagen and red cells). These sections were sufficiently thick to include enough cells and collagen for stromal organization to be visible under Nomarski optics. Three days after invasion, the fibroblasts extend along collagen bundles in the posterior region of the stroma; surprisingly, fibroblasts near the epithelium are more rounded. The collagen itself is organized in orthogonal bundles rather than in sheets. Measurements show that posterior bundles increase in size with time while anterior stroma si similar in diameter to primary stroma. These observations confirm that the epithelium continues to deposit primary stroma up to at least the 14th day. They show, moreover, that fibroblasts deposit collagen fibrils on extant stroma and that the farther a bundle is from the epithelium, and hence the longer the period since it was first laid down, the wider it is likely to be. Analysis of the results and existing data on hyaluronic acid levels in the stroma suggests that Bowman's membrane, the region of anterior stroma that remains uncolonized by cells, is, during this period at least, primary stroma laid down but as yet unswollen.  相似文献   

19.
The low angle X-ray diffraction pattern from corneal stroma can be interpreted as arising from the equivalent of sharp meridional reflections due to the packing of molecules along the collagen fibrils and an equatorial pattern due to the packing of these fibrils within lamellae.Axial electron density profiles for corneal collagen fibrils have been produced by combining intensity data from the meridional pattern with two independent sets of phases. The first set was obtained using an electron microscopical technique, whereas the second set consisted of calculated tendon collagen phases given in the literature. Substantial agreement between the two electron density profiles was found.A quantitative analysis of the difference between the electron density profiles of rat tail tendon and corneal collagen showed that the step between the gap and overlap regions is smaller in cornea than in tendon. This is probably due to the binding of non-collagenous material in the gap region as occurs in bone and other tissue. Two peaks corresponding to regions where electron density is greater in the cornea are situated at the gap/overlap junctions. A third region where the corneal collagen is more electron dense is located near the centre of the gap region. The proximity of these peaks to the positions of hydroxylysine residues along the fibril axis suggests that they may be the major sites at which sugars are bound to corneal collagen.  相似文献   

20.
Summary The present study describes the formative process of the initiation of cellular intrinsic fiber cementum (CIFC) in still growing human teeth. From 29 premolars and molars with incomplete roots developed to 60–90% of their final length, 8 premolars (with roots formed to three quarters of their final length) were selected for electron-microscopic investigation. All teeth were clinically intact and prefixed in Karnovsky's fixative immediately after extraction. Most of them were decalcified in ethylene diaminetetraacetic acid (EDTA), and the apical part of the roots was divided axially into mesial and distal portions that were subdivided in about 5 slices each. Following osmication and embedding in Epon, these blocks were cut for light- and electron-microscopic examination. In addition, 5 teeth with incomplete roots were freed from organic material and processed for scanning electron microscopy. It was found that CIFC-initiation commenced very close to the advancing root edge and resulted in a rapid cementum thickening. Thereafter, appositional growth continued on the already established cementum surface. Large, basophilic and rough endoplasmic reticulum-rich cementoblasts, some of which became cementocytes, were responsible for both fast and slow CIFC-formation. The CIFC-matrix was free of Sharpey's fibers and composed of more or less organized intrinsic collagen fibrils, in part fibril bundles, that ran roughly parallel to the root surface. Initially, the cementum fibrils intermingled with those of the dentinal collagen fibrils, which were not yet mineralized. This boundary subsequently underwent calcification. The development of collagen fibril bundles and their extracellular arrangement were associated with cytoplasmic processes probably involved in fibril formation and fibril assembly. Many cementoblasts contained intracytoplasmic, membrane-bounded collagen fibrils, which probably were related to fibril formation rather than degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号