首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li J  Mahajan A  Tsai MD 《Biochemistry》2006,45(51):15168-15178
Ankyrin repeat, one of the most widely existing protein motifs in nature, consists of 30-34 amino acid residues and exclusively functions to mediate protein-protein interactions, some of which are directly involved in the development of human cancer and other diseases. Each ankyrin repeat exhibits a helix-turn-helix conformation, and strings of such tandem repeats are packed in a nearly linear array to form helix-turn-helix bundles with relatively flexible loops. The global structure of an ankyrin repeat protein is mainly stabilized by intra- and inter-repeat hydrophobic and hydrogen bonding interactions. The repetitive and elongated nature of ankyrin repeat proteins provides the molecular bases of the unique characteristics of ankyrin repeat proteins in protein stability, folding and unfolding, and binding specificity. Recent studies have demonstrated that ankyrin repeat proteins do not recognize specific sequences, and interacting residues are discontinuously dispersed into the whole molecules of both the ankyrin repeat protein and its partner. In addition, the availability of thousands of ankyrin repeat sequences has made it feasible to use rational design to modify the specificity and stability of physiologically important ankyrin repeat proteins and even to generate ankyrin repeat proteins with novel functions through combinatorial chemistry approaches.  相似文献   

2.
3.
The ankyrin repeat is one of the most common protein sequence motifs. Recent X-ray and NMR structures of ankyrin-repeat proteins and their complexes have provided invaluable insights into the molecular basis of the extraordinary variety of biological activities of these molecules. In particular, they have begun to reveal how a large family of structurally related proteins can interact specifically with such a diverse array of macromolecular targets.  相似文献   

4.
5.
We live in an age of access to more information than ever before. This can be a double-edged sword. Increased access to information allows for more informed and empowered researchers, while information overload becomes an increasingly serious risk. Thus, there is a need for intelligent information retrieval systems that can summarize relevant and reliable textual sources to satisfy a user's query. Question answering is a specialized type of information retrieval with the aim of returning precise short answers to queries posed as natural language questions. We present a review and comparison of three biomedical question answering systems: askHERMES (http://www.askhermes.org/), EAGLi (http://eagl.unige.ch/EAGLi/), and HONQA (http://services.hon.ch/cgi-bin/QA10/qa.pl).  相似文献   

6.
Many proteins contain a thioredoxin (Trx)-like domain fused with one or more partner domains that diversify protein function by the modular construction of new molecules. The Escherichia coli protein YbbN is a Trx-like protein that contains a C-terminal domain with low homology to tetratricopeptide repeat motifs. YbbN has been proposed to act as a chaperone or co-chaperone that aids in heat stress response and DNA synthesis. We report the crystal structure of YbbN, which is an elongated molecule with a mobile Trx domain and four atypical tetratricopeptide repeat motifs. The Trx domain lacks a canonical CXXC active site architecture and is not a functional oxidoreductase. A variety of proteins in E. coli interact with YbbN, including multiple ribosomal protein subunits and a strong interaction with GroEL. YbbN acts as a mild inhibitor of GroESL chaperonin function and ATPase activity, suggesting that it is a negative regulator of the GroESL system. Combined with previous observations that YbbN enhances the DnaK-DnaJ-GrpE chaperone system, we propose that YbbN coordinately regulates the activities of these two prokaryotic chaperones, thereby helping to direct client protein traffic initially to DnaK. Therefore, YbbN may play a role in integrating the activities of different chaperone pathways in E. coli and related bacteria.  相似文献   

7.
Lipidation catalyzed by protein prenyltransferases is essential for the biological function of a number of eukaryotic proteins, many of which are involved in signal transduction and vesicular traffic regulation. Sequence similarity searches reveal that the alpha-subunit of protein prenyltransferases (PTalpha) is a member of the tetratricopeptide repeat (TPR) superfamily. This finding makes the three-dimensional structure of the rat protein farnesyltransferase the first structural model of a TPR protein interacting with its protein partner. Structural comparison of the two TPR domains in protein farnesyltransferase and protein phosphatase 5 indicates that variation in TPR consensus residues may affect protein binding specificity through altering the overall shape of the TPR superhelix. A general approach to evolutionary analysis of proteins with repetitive sequence motifs has been developed and applied to the protein prenyltransferases and other TPR proteins. The results suggest that all members in PTalpha family originated from a common multirepeat ancestor, while the common ancestor of PTalpha and other members of TPR superfamily is likely to be a single repeat protein.  相似文献   

8.
Efficient intermolecular transposition of bacterial insertion sequence IS911 involves the activities of two element-encoded proteins: the transposase, OrfAB, and a regulatory factor, OrfA. OrfA shares the majority of its amino acid sequence with the N-terminal part of OrfAB. This includes a putative helix-turn-helix and three of four heptads of a leucine zipper motif. OrfA strongly stimulates OrfAB-mediated intermolecular transposition both in vivo and in vitro. The present results support the notion that this is accomplished by direct interaction between these two proteins via the leucine zipper. We used both a genetic approach, based on gene fusions with phage lambda repressor, and a physical approach, involving co-immunoprecipitation, to show that OrfA not only undergoes oligomerisation but is capable of engaging with OrfAB to form heteromultimers, and that the leucine zipper is necessary for both types of interaction. Furthermore, mutation of the leucine zipper in OrfA inactivated its regulatory function. Previous observations demonstrated that the integrity of the leucine zipper motif was also important for OrfAB binding to the IS911 terminal inverted repeats. Here, we show, in gel shift experiments, using a derivative of OrfAB deleted for the C-terminal catalytic domain, OrfAB[1-149], that the protein is capable of pairing two inverted repeats to generate a species resembling a "synaptic complex". Preincubation of OrfAB[1-149] with OrfA dramatically reduced formation of this complex and favored formation of an alternative complex devoid of OrfA. Together these results suggest that OrfA exerts its regulatory effect by interacting transiently with OrfAB via the leucine zipper and modifying OrfAB binding to the inverted repeats.  相似文献   

9.
The notion that all protein functions are determined through macromolecular interactions is the driving force behind current efforts that aim to solve the structures of all cellular complexes. Recent findings, however, demonstrate a significant amount of structural disorder or polymorphism in protein complexes, a phenomenon that has been largely overlooked thus far. It is our view that such disorder can be classified into four mechanistic categories, covering a continuous spectrum of structural states from static to dynamic disorder and from segmental to full disorder. To emphasize its generality and importance, we suggest a generic term, 'fuzziness', for this phenomenon. Given the crucial role of protein disorder in protein-protein interactions and in regulatory processes, we envision that fuzziness will become integral to understanding the interactome.  相似文献   

10.
There are several different families of repeat proteins. In each, a distinct structural motif is repeated in tandem to generate an elongated structure. The nonglobular, extended structures that result are particularly well suited to present a large surface area and to function as interaction domains. Many repeat proteins have been demonstrated experimentally to fold and function as independent domains. In tetratricopeptide (TPR) repeats, the repeat unit is a helix-turn-helix motif. The majority of TPR motifs occur as three to over 12 tandem repeats in different proteins. The majority of TPR structures in the Protein Data Bank are of isolated domains. Here we present the high-resolution structure of NlpI, the first structure of a complete TPR-containing protein. We show that in this instance the TPR motifs do not fold and function as an independent domain, but are fully integrated into the three-dimensional structure of a globular protein. The NlpI structure is also the first TPR structure from a prokaryote. It is of particular interest because it is a membrane-associated protein, and mutations in it alter septation and virulence.  相似文献   

11.
12.
Transient interactions, which involve protein interactions that are formed and broken easily, are important in many aspects of cellular function. Here we describe structural and functional properties of transient interactions between globular domains and between globular domains, short peptides, and disordered regions. The importance of posttranslational modifications in transient interactions is also considered. We review techniques used in the detection of the different types of transient protein-protein interactions. We also look at the role of transient interactions within protein-protein interaction networks and consider their contribution to different aspects of these networks.  相似文献   

13.
The U2B'''' RNP motif as a site of protein-protein interaction.   总被引:18,自引:6,他引:18       下载免费PDF全文
The U2 snRNP contains two specific proteins, U2B' and U2A'. Neither of these proteins, on its own, is capable of specific interactions with U2 RNA. Here, a complex between U2B' and U2A' that forms in the absence of RNA is identified. Analysis of mutant forms of U2B' shows that the smallest fragment able to bind specifically U2 RNA (amino acids 1-88) is also the minimal region required for complex formation with U2A', and implies that this region must be largely structurally intact for U2A' interaction. Although this truncated U2B' fragment is capable of making specific protein--RNA and protein-protein interactions its structure, as measured by the ability to bind to U2A', appears to depend on the rest of the protein. Hybrids between U2B' and the closely related U1A protein are used to localize U2B' specific amino acids involved in protein-protein interaction. These can be divided into two functional groups. U2A' interaction with U2B' amino acids 37-46 permits binding to U2 RNA whereas interaction with U2B' specific amino acids between positions 14 and 25 reduces non-specific binding to U1 RNA. These two proteins may serve as a general example of how RNA binding may be modulated by protein-protein interaction in the assembly of RNPs, particularly since the region of U2' involved in interaction with U2A' consists mainly of a conserved RNP motif.  相似文献   

14.
The leucine-rich repeat as a protein recognition motif   总被引:52,自引:0,他引:52  
Leucine-rich repeats (LRRs) are 20-29-residue sequence motifs present in a number of proteins with diverse functions. The primary function of these motifs appears to be to provide a versatile structural framework for the formation of protein-protein interactions. The past two years have seen an explosion of new structural information on proteins with LRRs. The new structures represent different LRR subfamilies and proteins with diverse functions, including GTPase-activating protein rna1p from the ribonuclease-inhibitor-like subfamily; spliceosomal protein U2A', Rab geranylgeranyltransferase, internalin B, dynein light chain 1 and nuclear export protein TAP from the SDS22-like subfamily; Skp2 from the cysteine-containing subfamily; and YopM from the bacterial subfamily. The new structural information has increased our understanding of the structural determinants of LRR proteins and our ability to model such proteins with unknown structures, and has shed new light on how these proteins participate in protein-protein interactions.  相似文献   

15.
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein-protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the non-interacting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain-domain interactions. Given a protein-protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain-domain interactions, and used known domain-domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain-domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites.  相似文献   

16.
The complex of barnase (bn) and barstar (bs), which has been widely studied as a model for quantitative analysis of protein-protein interactions, is significantly destabilized by a single mutation, namely, bs Asp39 --> Ala, which corresponds to a change of 7.7 kcal x mol(-1) in the free energy of binding. However, there has been no structural information available to explain such a drastic destabilization. In the present study, we determined the structure of the mutant complex at 1.58 A resolution by X-ray crystallography. The complex was similar to the wild-type complex in terms of overall and interface structures; however, the hydrogen bond network mediated by water molecules at the interface was significantly different. Several water molecules filled the cavity created by the mutation and consequently caused rearrangement of the hydrated water molecules at the interface. The water molecules were redistributed into a channel-like structure that penetrated into the complex. Furthermore, molecular dynamics simulations showed that the mutation increased the mobility of water molecules at the interface. Since such a drastic change in hydration was not observed in other mutant complexes of bn and bs, the significant destabilization of the interaction may be due to this channel-like structure of hydrated water molecules.  相似文献   

17.
The ANK repeat: a ubiquitous motif involved in macromolecular recognition   总被引:26,自引:0,他引:26  
Many proteins rely on stable, noncovalent interactions with other macromolecules to perform their function. The identification of a repeated sequence motif, the ANK repeat, in diverse proteins whose common function involves binding to other proteins indicates one way nature may achieve a wide range of protein-protein interactions. In this article, we describe evidence that these ANK repeats are involved in the specific recognition of proteins and possibly DNA, and present a model for the folding of the motif.  相似文献   

18.
The recognition of multiple ligands at a single molecular surface is essential to many biological processes. Conformational flexibility has emerged as a compelling strategy for association at such convergent binding sites. Studies over the past few years have brought about a greater understanding of the role that protein plasticity might play in protein-protein interactions.  相似文献   

19.
Our understanding of the structure and function of kinetochores has advanced dramatically over the past 10 years, yet how the plus end of spindle microtubules interacts with the kinetochore and establishes amphitelic attachment for proper sister chromatid segregation remains unresolved. However, several recent reports from different organisms have shed new light on this issue. A key player in microtubule-kinetochore interaction is the conserved Ndc80 outer kinetochore complex. In both yeast and human cells in particular, a ubiquitous internal ‘loop’ found in the Ndc80 molecule interrupting its C-terminal coiled-coil domain plays critical roles in protein-protein interaction, by recruiting microtubule-binding proteins to ensure proper kinetochore-microtubule attachment. In this commentary, we summarise the recent progress made and discuss the evolutionary significance of this loop’s role in microtubule dynamics at the kinetochore for accurate chromosome segregation.  相似文献   

20.

Background  

Several in silico methods exist that were developed to predict protein interactions from the copious amount of genomic and proteomic data. One of these methods is Domain Fusion, which has proven to be effective in predicting functional links between proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号