首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti-lipoprotein lipase sera injected intravenously in roosters blocked quantitatively the catabolism of very low density lipoprotein (VLDL) triglyceride. Antibodies were produced in rabbits immunized with highly purified lipoprotein lipase (LPL, glycerol ester hydrolase, E C 3.1.1.3) prepared from chicken adipose tissue. Following anti-LPL serum injection there was a linear increase in plasma triglyceride concentration. The rate of entry of triglyceride in plasma was estimated from the rate of triglyceride accumulation in the plasma of animals injected with anti-LPL serum, or from the disappearance curve of biologically labelled VLDL. In instances where both measurements were conducted in the same animals there was very close agreement between the two procedures. Inhibition of VLDL triglyceride catabolism of anti-LPL serum provided a way to characterize newly secreted VLDL that exhibited a broad spectrum of particle sizes with a median of 625 A degrees. They contained 76.2 +/- 1.2% triglyceride and had a high ratio of free to ester cholesterol (2.46 +/- 0.45). In control VLDL samples there was 46.1% triglyceride, and the ratio of free to ester cholesterol was 1.19. The complete inhibition of triglyceride removal by an antiserum prepared against adipose tissue LPL demonstrates that the NaCl-inhibited, serum-activated lipase prepared by affinity chromatography on heparin-Sepharose and concanavalin A-Sepharose columns is the enzyme responsible in vivo for the catabolism of VLDL triglyceride. Further, the kinetics of triglyceride accumulation in the plasma provide evidence that the site of degradation of VLDL triglyceride is within the plasma compartment.  相似文献   

2.
Rats fed a fat-free diet containing no drug, 0.02% or 0.10% halofenate, or 0.25% clofibrate for 14 days were injected intravenously with equivalent amounts of either [2-3H]glycerol or [1(3)-3H]glycerol. Blood samples were collected at times up to 150 min after injection and serum triglycerides were isolated and assayed for radioactivity. Kinetic analysis of the serum appearance and clearance curves of 3H-labeled triglyceride permits estimation of serum total 3H-labeled triglyceride formation and triglyceride fractional turnover rates. The total amounts of 3H-labeled triglyceride formed from [2-3H] or from [1(3)-3H] glycerol in control-fed animals were very similar. Over 95% of the serum 3H-labeled triglyceride formed from either substrate circulated in a rapidly turning-over triglyceride pool (t1/2 = 8 min). Treatment with 0.10% halofenate or 0.25% clofibrate decreased labeling of serum triglycerides by 75-80% without increasing serum 3H-labeled triglyceride fractional turnover rates. Furthermore, both drugs decreased incorporation in vivo of 14C from [U-14C]glycerol into hepatic but not intestinal triglycerides without significantly decreasing incorporation of 14C into total phospholipids of either tissue. From these observations we suggest that, in the intact normal rat, sustained reduction of serum triglyceride levels produced by treatment with halofenate or clofibrate is due to inhibition of hepatic triglyceride formation.  相似文献   

3.
The transfer of triglyceride from sites of synthesis in the endoplasmic reticulum to cytoplasmic lipid droplets and nascent VLDL (very low density lipoproteins) in rat liver in vivo has been examined with [3H]glycerol, cell fractionation, and electron microscopy. Rates of mass transfer of newly synthesized triglyceride were estimated from the specific radioactivity of triglyceride present in microsomal membranes and the radioactivity observed in recipient triglyceride pools. Fasting decreased the transfer of triglyceride to nascent VLDL without affecting transfer to lipid droplets. Stimulation of triglyceride synthesis with 2-tetradecylglycidic acid (TDGA) increased transfer of triglyceride to nascent VLDL 5-fold, and to lipid droplets 14-fold, 1 hr after TDGA administration. Triglyceride transfer to nascent VLDL was increased 6-fold, and to lipid droplets 37-fold, above control rates 6 hr following TDGA treatment, indicative of saturation of triglyceride assembly into nascent VLDL and storage of excess triglyceride in lipid droplet reservoirs. These liver triglyceride pools were concurrently expanded and electron microscopy demonstrated more abundant VLDL particles in the endoplasmic reticulum together with a proliferation of lipid droplets in hepatocytes. TDGA progressively decreased hepatic sn-glycerol-3-phosphate in fasting rats while triglyceride synthesis increased, indicating that sn-glycerol-3-phosphate does not limit the rate of triglyceride synthesis in this metabolic state. Results implicate triglyceride transfer from endoplasmic reticulum membranes to nascent VLDL as a regulated determinant of hepatic VLDL assembly and VLDL triglyceride secretion in vivo.  相似文献   

4.
Endogenous triglyceride turnover in liver and plasma of the dog   总被引:8,自引:0,他引:8  
Radioactive glycerol and S(f) > 20 lipoproteins labeled with it were used to study turnover of plasma S(f) > 20 and hepatic triglyceride in anesthetized dogs. From specific activity-time curves of these lipids after an injection of labeled material, a tentative and incomplete model for the kinetics of endogenous hepatic and plasma triglyceride was defined and partially validated. Pool sizes and turnover rates of triglyceride in liver and S(f) > 20 lipoproteins of plasma were then calculated in seven dogs. Hepatic triglyceride was composed of two compartments: 60% metabolically inert and 40% metabolically active. Although communication between these hepatic compartments surely occurred during the time course of these studies, it was not sufficient to be detected by our present methods. The metabolically active compartment turned over as a single pool but with two destinations: a quite variable proportion (an average of 61%) was secreted into plasma as S(f) > 20 triglyceride, and an average of 39% was presumably hydrolyzed within the liver. The fractional turnover rate of plasma S(f) > 20 triglyceride was 2-3 times that of hepatic triglyceride. This finding, and the parallel decline of specific activities of plasma S(f) > 20 and liver triglyceride after injection of labeled glycerol, confirm the rate-determining role of hepatic triglyceride. In this respect the dog differs importantly from man. Though turnover rates of plasma S(f) > 20 triglyceride fell in the same range in men and dogs, the relationship of turnover rate to plasma concentration of this lipid differed greatly between them. The model for the dog does resemble that previously reported for man, however, in the lack of major recycling of intact plasma triglyceride between the liver and plasma. Lack of such recycling, however, does not exclude return of plasma triglyceride into a hepatic triglyceride sink. The amount of such unidirectional uptake, if any, could not be determined by these techniques.  相似文献   

5.
The heterogeneous nature of very low density lipoprotein (VLDL) metabolism in hypertriglyceridemia gives rise to complex kinetics when labeled VLDL are traced. Analysis of such systems benefits from the simultaneous study of several metabolically discrete subfractions which are then integrated. We have studied the kinetics of VLDL and intermediate density lipoprotein (IDL) apoprotein B and triglyceride simultaneously by injecting homologous 125I-labeled VLDL1 and 131I-labeled VLDL2 and [2-3H]glycerol intravenously in three diverse type IV hyperlipoproteinemic subjects. An additional type IV subject received only [2-3H]glycerol. Specific radioactivities were measured in: VLDL1-triglyceride and -apoB, VLDL2-triglyceride and -apoB, and in each corresponding subfraction after further separation into heparin-Sepharose-bound and -unbound fractions. ApoB and triglyceride specific radioactivities were also measured in IDL. Analysis of the kinetics of apoB in the unbound fractions in VLDL1 and VLDL2 showed the presence of two pools of particles, one of which turned over rapidly. The kinetics of apoB in the bound fractions in VLDL1 and VLDL2 were, in contrast, dominated by a large slowly turning over pool of particles that resembled the kinetics of whole VLDL. Evidence of a partial precursor-product relationship between the unbound and bound fractions suggested that the former was richer in nascent-like particles, while the latter contained more remnant particles. However, triglyceride specific radioactivity curves for both unbound and bound fractions showed initial rapid rises and broad peaks, indicating that the bound fraction also contained a substantial proportion of nascent-like particles. Using multicompartmental analysis, a model was constructed to account for the kinetics of both apoB and triglyceride in all fractions of VLDL and in IDL. The model comprises two parallel delipidation pathways that supply a common remnant pool with these features: 1) multiple direct inputs of particles into plasma at VLDL2 and IDL levels; 2) heterogeneous triglyceride precursor pools leading to different rates of labeling of VLDL1 and VLDL2; 3) very substantial delipidation of VLDL2 particles prior to conversion to IDL and; 5) triglyceride production rates somewhat higher than previously reported. The inclusion in the model of the rapidly turning over pool of triglyceride-rich particles, identified in the heparin-unbound fraction, suggests that values for triglyceride production in man have been underestimated.  相似文献   

6.
Plasma lipoprotein metabolism was studied in vivo in two lines of chickens produced by selection for high and low plasma very low density lipoprotein (VLDL) concentration. Rates of VLDL secretion were measured by determining the rate of accumulation of triglyceride in the plasma after intravenous injection of anti-lipoprotein lipase antibody. The clearance of VLDL-triglyceride and its uptake into liver and adipose tissue was examined using radioactively labeled VLDL synthesized in vivo. The rate of VLDL secretion was about threefold higher in the high-VLDL line as compared to the leaner, low VLDL-line (6.7 vs 2.1 mumol VLDL triglyceride/h per ml of plasma). The clearance of VLDL from the circulation of the low VLDL line was much faster than that of the high VLDL line (t1/2 of 3.7 and 13.6 min, respectively). The proportion of administered radiolabel taken up by the abdominal fat pad was substantially greater in the fat line than in the lean line (11.9 vs 4.8%, respectively). Lipoprotein lipase activities in leg muscle and heart were consistently greater in the low-VLDL line and beta-hydroxybutyrate concentrations in the plasma of the low-VLDL line were significantly greater than those in the high-VLDL line (0.86 vs 0.48 mumol/ml). The results show that the approximately tenfold difference in plasma VLDL concentration between lines is primarily due to markedly different rates of hepatic VLDL production and that selection has made a major effect on partitioning of VLDL triglyceride between adipose and other tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In order to understand the phosphatidylglycerol turnover mechanism, especially the differential turnover of diacylated and unacylated glycerol moieties of the lipid, products of phosphatidylglycerol metabolism were surveyed in vivo in Bacillus subtilis W23 and an alkalophile, Bacillus sp. strain A007. When cells of B. subtilis W23 labeled with radioactive glycerol were chased, lipoteichoic acid accumulated 90% of the radioactivity lost from the unacylated glycerol moiety of phosphatidylglycerol. Also, lipids other that phosphatidylglycerol, except diacylglycerol, and glycerol and glycerophosphate incorporated much less radioactivity. The [32P]phosphoryl group was also transferred from phosphatidylglycerol to lipoteichoic acid almost quantitatively in B. subtilis W23. A unique metabolism of phosphatidylglycerol was found in Bacillus sp. strain A007 which lacked phosphoglycolipid and lipoteichoic acid, that is, the turnover of phosphatidylglycerol of this organism was less extensive compared with that of B. subtilis W23, and both glycerol moieties of the lipid were metabolized at an identical rate. These results suggested that the major reaction involved in the turnover of phosphatidylglycerol was the transfer of glycerophosphate residue to lipoteichoic acid in a bacterium which possessed lipoteichoic acid and that several minor reactions also were involved in phosphatidylglycerol turnover.  相似文献   

8.
KK/San is a mutant mouse strain established in our laboratory from KK obese mice. KK/San mice show low plasma lipid levels compared with wild-type KK mice despite showing signs of hyperglycemia and hyperinsulinemia. Recently, we identified a mutation in the gene encoding angiopoietin-like protein 3 (Angptl3) in KK/San mice, and injection of adenoviruses encoding Angptl3 or recombinant ANGPTL3 protein to mutant KK/San mice raised plasma lipid levels. To elucidate the regulatory mechanism of ANGPTL3 on lipid metabolism, we focused on the metabolic pathways of triglyceride in the present study. Overexpression of Angptl3 in KK/San mice resulted in a marked increase of triglyceride-enriched very low density lipoprotein (VLDL). In vivo studies using Triton WR1339 revealed that there is no significant difference between mutant and wild-type KK mice in the hepatic VLDL triglyceride secretion rate. However, turnover studies using radiolabeled VLDL revealed that the clearance of (3)H-triglyceride-labeled VLDL was significantly enhanced in KK/San mice, whereas the clearance of (125)I-labeled VLDL was only slightly enhanced. In vitro analysis of recombinant protein revealed that ANGPTL3 directly inhibits LPL activity. These data strongly support the hypothesis that ANGPTL3 is a new class of lipid metabolism modulator, which regulates VLDL triglyceride levels through the inhibition of LPL activity.  相似文献   

9.
Relying on methods other than the determination of turnover rate of triglyceride from the curve of plasma triglyceride radioactivity after administration of labeled precursor, we have confirmed that the endogenous hypertriglyceridemia induced by estrogenization of the chick is accompanied by increased production of triglyceride. Chicks estrogenized with diethylstilbestrol became grossly hypertriglyceridemic and had elevated levels of plasma free fatty acid. Within 5 min of administration of labeled palmitate, estrogenized hypertriglyceridemic birds converted approximately 10 times more plasma free fatty acid to hepatic triglyceride than did controls. In addition, 2 hr after intraperitoneal injection of [14-C]acetate or [U-14-C]glucose, the specific activity of very low density lipoprotein triglyceride (VLDL-TG) of estrogenized birds reached or exceeded that of the untreated controls, and the rapid enrichment of the vastly expanded plasma VLDL-TG pool with labeled triglyceride further indicated that increased production of triglyceride occurs with estrogenization. Furthermore, [14-C]acetate incorporation into VLDL-TG was calculated to be 1.6 and 6.6% of the injected dose in estrogenized birds compared with 0.1 and 0.2% in untreated birds. Increased production of plasma VLDL-TG was confirmed by a kinetic study of VLDL-TG metabolism, employing reinjected, endogenously prepared [14-C]triglyceride-labeled VLDL. The fractional turnover rate of VLDL-TG in estrogenized hypertriglyceridemic birds was substantially less than that in untreated controls (0.32 plus or minus 0.03 vs 0.71 plus or minus 0.03/hr), but the total turnover rate was nearly 50 times greater (244 plus or minus 52 vs. 5 plus or minus 1 mg/hr).  相似文献   

10.
These studies were conducted to understand the relationship between measures of systemic free fatty acid (FFA) reesterification and regional FFA, glycerol, and triglyceride metabolism during fasting. Indirect calorimetry was used to measure fatty acid oxidation in six men after a 60-h fast. Systemic and regional (splanchnic, renal, and leg) FFA ([(3)H]palmitate) and glycerol ([(3)H]glycerol) kinetics, as well as splanchnic triglyceride release, were measured. The rate of systemic FFA reesterification was 366 +/- 93 micromol/min, which was greater (P < 0.05) than splanchnic triglyceride fatty acid output (64 +/- 6 micromol/min), a measure of VLDL triglyceride fatty acid export. The majority of glycerol uptake occurred in the splanchnic and renal beds, although some leg glycerol uptake was detected. Systemic FFA release was approximately double that usually present in overnight postabsorptive men, yet the regional FFA release rates were of the same proportions previously observed in overnight postabsorptive men. In conclusion, FFA reesterification at rest during fasting far exceeds splanchnic triglyceride fatty acid output. This indicates that nonhepatic sites of FFA reesterification are important, and that peripheral reesterification of FFA exceeds the rate of simultaneous intracellular triglyceride fatty acid oxidation.  相似文献   

11.
Insulin regulates hepatic VLDL production by activation of phosphatidylinositide 3-kinase (PI3-kinase) which decreases apo B available for lipid assembly. The current study evaluated the dependence of the VLDL apolipoprotein B (apo B) pathway on PI3-kinase activity in vivo. VLDL production was examined in B100 only, apo B mRNA editing catalytic subunit 1 (apobec-1(-/-)) mice, using the Triton WR 1339 method. Glucose injection suppressed VLDL triglyceride production by 28% in male and by 32% in female mice compared with saline-injected controls. When wortmannin was injected to inhibit PI3-kinase, VLDL triglyceride production was increased by 52% in males and by 89% in females, and VLDL B100 levels paralleled triglyceride changes. Pulse-chase experiments in primary mouse hepatocytes showed that wortmannin increased net freshly synthesized B100 availability by >35%. To test whether physiological insulin resistance produced equivalent effects to wortmannin, we studied male apobec-1(-/-) mice who became hyperlipidemic on being fed a fructose-enriched diet. Fructose-fed apobec-1(-/-) mice had significantly higher VLDL triglyceride and B100 production rates compared with chow-fed mice, and rates were refractile to glucose or wortmannin. Hepatic VLDL triglyceride and B100 production in wortmannin-injected chow-fed mice equaled that observed in fructose-fed mice. Together, results suggest in vivo and in vitro that wortmannin-sensitive PI3-kinases maintain a basal level of VLDL suppression that is sensitive to changes in activation and that can increase VLDL production when PI3-kinase is inhibited to levels similar to those induced by insulin resistance.  相似文献   

12.
Previous in vivo studies suggested a new model to describe the metabolism of very low density lipoproteins (VLDL). It was hypothesized that some of the lipoprotein triglyceride was transferred directly from hepatocytes and intestinal mucosal cells into preexisting extracellular VLDL particles. These studies employ an in vitro system to test this hypothesis. Isolated rat liver cells containing newly made radioactive triglyceride were prepared. These cells were incubated in medium to which exogenous VLDL had or had not been added. The presence of extracellular VLDL (rat or human) stimulated the transfer of labeled triglyceride out of the liver cells. This triglyceride was recovered in the medium's VLDL (as determined by its density and its precipitability by MnCl2-heparin or by anti-apoprotein B). Although these studies focussed on VLDL, preliminary data showed that similar triglyceride transfer occurred in the presence of the other apoprotein B containing lipoprotein, low density lipoprotein (LDL). However, in the presence of equivalent amounts of LDL, this triglyceride transfer was less than that seen in the presence of exogenous VLDL. Furthermore, the increased triglyceride released in the presence of LDL occurred entirely in the d less than 1.006 fraction of the medium. That released in the presence of VLDL was recovered in the d greater than 1.006 fraction. Hence, we conclude that the transfer of the newly made triglyceride was from the cell to the extracellular lipoprotein that had been added to the medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Role of very low density lipoproteins in the energy metabolism of the rat   总被引:2,自引:0,他引:2  
The role of very low density lipoproteins (VLDL) in the energy metabolism of conscious, 24-hr fasted rats was studied. VLDL labeled with [2-3H]glycerol and [1-14C]palmitate were infused into the rats, along with [1-13C]palmitate bound to albumin and d-8-glycerol, and various metabolic factors were assessed. The rates of appearance in plasma of fatty acids in VLDL and albumin-bound free fatty acids (FFA) were about equal, on a molar basis, and only a small fraction of the FFA flux was derived from VLDL. The rate of direct oxidation of the fatty acids from VLDL was 4.4 +/- 0.9 mumol of FA/kg X min, as compared with the value of 4.0 +/- 0.42 mumol of FA/kg X min for plasma FFA. Four percent of the plasma glycerol flux was derived from VLDL. Thus, the direct oxidation of fatty acids in VLDL played an important role in the energy metabolism of the rats, accounting for a percentage of the total CO2 production that was equal to the amount that arose from the oxidation of plasma FFA. The oxidation of VLDL-fatty acids did not involve prior entry of the fatty acids into the plasma FFA pool to any significant extent.  相似文献   

14.
The very low density lipoprotein receptor (VLDLR) has been proposed to play a role in the delivery of fatty acids to peripheral tissues. However, despite reduced adipose tissue mass in VLDLR-deficient (VLDLR(-)(/-)) mice, this has been difficult to substantiate. In the present study, VLDLR-deficient and VLDLR-overexpressing (PVL) mice were cross-bred onto a low density lipoprotein receptor knockout (LDLR(-)(/-)) background to study the VLDLR under conditions of relatively high serum VLDL and triglyceride levels. Absence of the VLDLR resulted in a significant increase in serum triglyceride levels (1.9-fold) when mice were fed a high fat diet. In contrast, overexpression of the VLDLR resulted in a significant decrease in serum triglyceride levels (2.0-fold) under similar conditions. When kept on a chow diet, a period of prolonged fasting revealed a significant increase in serum triglyceride levels in VLDLR(-)(/-); LDLR(-)(/-) mice (2.3-fold) as compared with LDLR(-)(/-) controls. This could not be attributed to altered apolipoprotein B and VLDL triglyceride production rates. Furthermore, no major differences in nascent VLDL triglyceride content were found between VLDLR(-)(/-); LDLR(-)(/-) mice and LDLR(-)(/-) controls. However, the triglyceride content of circulating VLDL of VLDLR(-)(/-); LDLR(-)(/-) mice (63%) was relatively high as compared with LDLR(-)(/-) controls (49%). These observations suggest that the VLDLR affects peripheral uptake of VLDL triglycerides.In conclusion, under conditions of LDLR deficiency in combination with high fat feeding or prolonged fasting, the effect of the VLDLR on VLDL triglyceride metabolism was revealed.  相似文献   

15.
本文利用脂蛋白脂肪酶(LPL)在体外研究人血清极低密度脂蛋白(VLDL)的代谢变化,及其与其他脂蛋白的关系。发现在适宜条件下,LPL水解VLDL核中的甘油三酯(TG),释放游离脂肪酸(FFA),同时VLDL浊度变小,透光度增加。反应后产物通过密度梯度超速离心方法分离,发现分解代谢产物在密度为1.020~1.045g/ml之间有新生组分产生,其电泳迁移率增快,着色带增宽。电镜观察这些新组分的颗粒比天然VLDL为小,而比低密度脂蛋白(LDL)为大,并有空泡状不规则脂质体的单层形成,以及一些非球形、具有触角或尾巴状的构形,很可能是脂解后VLDL的过剩表面,是新生高密度脂蛋白(HDL)的前体。这些结果说明人血清VLDL经LPL分解代谢后,其结构,形态和组分均发生了明显的变化。  相似文献   

16.
Livers from fed or 24-hr fasted male rats were perfused in a recycling system. VLDL labeled with [1-14C]oleate (95% in triglyceride), produced in separate perfusions of livers from fed rats, was added to the medium as a pulse. Uptake of VLDL 14C-labeled triglyceride by livers from fasted rats was less than that from fed rats regardless of addition of oleate. During the interval in which radioactive triglyceride was taken up, the mass of triglyceride in the medium increased, indicative of the synthesis and net secretion of triglycerides. The rates of secretion of VLDL and uptake of VLDL were both more rapid in livers from fed rats in comparison to those from fasted animals. It was calculated that about 50% of the triglyceride synthesized and secreted by the liver was taken back by livers from fed rats. The VLDL from livers of fasted rats did not contain any apoE detectable by SDS gel electrophoresis or by radioimmunoassay when no fatty acid or 166 mumol of oleic acid was infused. In contrast, apoE comprised 6% of the VLDL apoprotein derived from perfusion of livers from fed animals in the absence of added fatty acid, and 20% when the fed livers were infused with 166 mumol of oleic acid. However, the net output (accumulation) of apoE by fasted liver was only two-thirds that from fed livers. When lipoprotein-free rat plasma containing apoE (4 mg/dl) was used in place of bovine serum albumin, the VLDL secreted by livers from either fed or fasted rats contained apoE and was taken up to a similar extent by such livers. These data suggested that the apoE of the d greater than 1.21 g/ml fraction was transferred to newly secreted VLDL which then stimulated uptake of the VLDL by livers from fasted rats. With further stimulation of secretion of VLDL triglyceride by infusion of 332 mumol of oleic acid/hr, the percent of apoE in the VLDL secreted by livers from fasted rats increased to 20%, which was similar to that of the VLDL produced by livers from fed rats when either 166 or 332 mumol/hr was infused. These data suggest a relationship between rates of hepatic secretion of VLDL (TG) and apoE, and the association of apoE with the secreted VLDL. During fasting, reduced secretion of both VLDL and apoE resulted in a VLDL particle that was considerably diminished in content of apoE and, therefore, that would be taken up by the liver at a reduced rate, in comparison to that observed in the fed animal.  相似文献   

17.
Very low density lipoprotein (VLDL) and low density lipoprotein (LDL) apoprotein (apo)-B turnover rates were measured simultaneously by injecting 131I-labeled VLDL and 125I-labeled LDL into fasting baboons (Papio sp.) selectively bred for high serum cholesterol levels and having either low or high LDL levels. The radioactivities in VLDL, intermediate density lipoprotein (IDL), LDL apoB, and urine were measured at intervals between 5 min and 6 days. Kinetic parameters for apoB were calculated in each baboon fed a chow diet or a high cholesterol, high fat diet (HCHF). VLDL apoB residence times were similar in the two groups of animals fed chow; they were increased by HCHF feeding in high LDL animals, but not in low LDL animals. Production rates of VLDL apoB were decreased by the HCHF diet in both high and low LDL animals. Most of the radioactivity from VLDL apoB was transferred to IDL. However, a greater proportion of radioactivity was removed directly from IDL apoB in low LDL animals than in high LDL animals, and only about one-third appeared in LDL. In high LDL animals, a greater proportion of this radioactivity was converted to LDL (61.4 +/- 7.2% in chow-fed animals and 49.2 +/- 10.9% in animals fed the HCHF diet; mean +/- SEM, n = 5). Production rates for LDL apoB were higher in high LDL animals than those in low LDL animals on both diets. The HCHF diet increased residence times of LDL apoB without changing production rates in both groups. VLDL apoB production was not sufficient to account for LDL apoB production in high LDL animals, a finding that suggested that a large amount of LDL apoB was derived from a source other than VLDL apoB in these animals.  相似文献   

18.
The current study assessed in vivo the effect of insulin on triglyceride-rich lipoprotein (TRL) production by rat liver. Hepatic triglyceride and apolipoprotein B (apoB) production were measured in anesthetized, fasted rats injected intravenously with Triton WR-1339 (400 mg/kg). After intravascular catabolism was blocked by detergent treatment, glucose (500 mg/kg) was injected to elicit insulin secretion, and serum triglyceride and apoB accumulation were monitored over the next 3 h. In glucose-injected rats, triglyceride secretion averaged 22.5 +/- 2.1 microg.ml(-1).min(-1), which was significantly less by 30% than that observed in saline-injected rats, which averaged 32.1 +/- 1.4 microg.ml(-1).min(-1). ApoB secretion was also significantly reduced by 66% in glucose-injected rats. ApoB immunoblotting indicated that both B100 and B48 production were significantly reduced after glucose injection. Results support the conclusion that insulin acts in vivo to suppress hepatic very low density lipoprotein (VLDL) triglyceride and apoB secretion and strengthen the concept of a regulatory role for insulin in VLDL metabolism postprandially.  相似文献   

19.
Apoproteins of chylomicrons, very low density lipoprotein (VLDL), and a low density + high density fraction secreted by proximal and distal rat small intestine into mesenteric lymph were examined during triglyceride (TG) absorption. Apoprotein output and composition were determined and the turnover rates of labeled non-apoB (soluble) apoproteins in lipoprotein fractions were measured after an intraluminal [(3)H]leucine pulse during stable TG transport into lymph. The output of VLDL apoproteins exceeded that of chylomicrons during the absorption of 45 micro mol of TG per hour. More [(3)H]leucine was incorporated into VLDL than into chylomicrons and the decay of newly synthesized VLDL apoproteins was more rapid than that of chylomicrons, in part due to higher concentrations of apoA-I and apoA-IV with a rapid turnover rate. Chylomicrons from proximal intestine contained more apoA-I and less C peptides than chylomicrons from distal intestine. Ninety percent of [(3)H]leucine incorporated into soluble apoproteins was in apoA-I and apoA-IV, but little apoARP was labeled. The turnover rate of apoA-I and apoA-IV differed significantly in the lymph lipoproteins examined. Although total C peptide labeling was small, evidence for intestinal apoC-II formation and differing patterns of apoC-III subunit labeling was obtained. [(3)H]Leucine incorporation and apoprotein turnover rates in lipoprotein secreted by proximal and distal intestine were similar. The different turnover rates of apoA-I and apoA-IV in individual lipoproteins suggest that these A apoproteins are synthesized independently in the intestine.-Holt, P. R., A-L. Wu, and S. Bennett Clark. Apoprotein composition and turnover in rat intestinal lymph during steady-state triglyceride absorption.  相似文献   

20.
The present study was undertaken to evaluate quantitatively the turnover of serum triacylglycerol (triglyceride) in the starved rat and to determine whether serum triacylglycerol recycled to liver contributes a significant fraction of the total hepatic triacylglycerol turnover. Serum was labelled in vitro with [3H]trioleoylglycerol (glycerol [3H]trioleate) to provide uniform labelling of all lipoprotein species. By using the curves describing disappearance of isotope from serum and its appearance in liver, rate constants for movement of triacylglycerol out of serum (0.29 min-1) and the uptake of serum triacylglycerol by liver (0.22 min-1) were calculated. The total rate of movement (flux) of triacylglycerol in these processes, the product of rate constant and serum pool size, was calculated to be 0.39 and 0.29 mg/min per 100 g body wt. respectively. A model is postulated for whole-body triacylglycerol metabolism consistent with the present data as well as most observations in the literature. From the model it can be predicted that: (1) the entire turnover of liver triacylglycerol in the starved rat can be accounted for on the basis of contributions from serum non-esterified fatty acid and serum triacylglycerol; (2) the entire turnover of the serum triacylglycerol pool can be accounted for quantitatively on the basis of contributions from intestine and liver; (3) the release rate for triacylglycerol from liver should be 0.34 to 0.35 mg/min per 100 g body wt.; (4) triacylglycerol synthesized by liver from non-esterified fatty acid of serum and by intestine can account quantitatively for the irreversible disposal rate of triacylglycerol from serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号