首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of biomass formation, D-xylose utilization, and mixed substrate utilization were determined in a chemostat using the yeast Candida shehatae. The maximum growth rate of C. shehatae grown aerobically on D-xylose was 0.42 h−1 and the Monod constant, K s, was 0.06 g L−1. The biomass yield, Y {X/S}, ranged from 0.40 to 0.50 g g−1 over a dilution rate range of 0.2–0.3 h−1, when C. shehatae was grown on pure D-xylose. Mixtures of D-xylose and glucose (∼1 : 1) were simultaneously utilized over a dilution rate from 0.15 to 0.35 h−1 at pH 3.5 and 4.5, but pH 3.5 reduced μmax and reduced the dilution rate range over which D-xylose was utilized in the presence of glucose. At pH 4.5, μmax was not reduced with the mixed sugar feed and the overall or lumped K s value was not significantly increased (0.058 g L−1 vs 0.06 g L−1), when compared to a pure D-xylose feed. Kinetic data indicate that C. shehatae is an excellent candidate for chemostat production of value added products from renewable carbon sources, since simultaneous mixed substrate utilization was observed over a wide range of growth rates on a 1 : 1 mixture of glucose and D-xylose. Received 21 August 1997/ Accepted in revised form 28 May 1998  相似文献   

2.
An isolated, perfused salmon tail preparation showed oxyconformance at low oxygen delivery rates. Addition of pig red blood cells to the perfusing solution at a haematocrit of 5 or 10% allowed the tail tissues to oxyregulate. Below ca. 60 ml O2 kg−1 h−1 of oxygen delivery (DO2), VO2 was delivery dependent. Above this value additional oxygen delivery did not increase VO2 of resting muscle above ca. 35 ml O2 kg−1 h−1. Following electrical stimulation, VO2 increased to ca. 65 ml O2 kg−1 h−1, with a critical DO2 of ca. 150 ml O2 kg−1 h−1. Dorsal aortic pressure fell to 69% of the pre-stimulation value after 5 min of stimulation and to 54% after 10 min. Microspheres were used to determine blood flow distribution (BFD) to red (RM) and white muscle (WM) within the perfused myotome. Mass specific BFD ratio at rest was found to be 4.03 ± 0.49 (RM:WM). After 5 min of electrical stimulation the ratio did not change. Perfusion with saline containing the tetrazolium salt 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) revealed significantly more mitochondrial activity in RM. Formazan production from MTT was directly proportional to time of perfusion in both red and WM. The mitochondrial activity ratio (RM:WM) did not change over 90 min of perfusion.  相似文献   

3.
Two-trait selection response with marker-based assortative mating   总被引:1,自引:1,他引:0  
 Marker-based assortative mating (MAM) – the mating of individuals that have similar genotypes at random marker loci – can increase selection response for a single trait by 3–8% over random mating (RM). Genetic gain is usually desired for multiple traits rather than for a single trait. My objectives in this study were to (1) compare MAM, phenotypic assortative mating (PAM), and RM of selected individuals for improving two traits and (2) determine when MAM will be most useful for improving two traits. I simulated 20 generations of selecting 32 out of 200 individuals in an F2 population. The individuals were selected based on an index (SI) of two traits and were intermated by MAM, PAM, or RM. I studied eight genetic models that differed in three contrasts: (1) weight, number of quantitative trait loci (QTL), and heritability (h 2) for each trait; (2) linkage of QTL for each trait; and (3) trait means of the inbred parents of the F2. For SI and the two component traits, MAM increased short-term selection response by 5–8% in six out of the eight genetic models. The MAM procedure was least effective in two genetic models, wherein the QTL for one trait were unlinked to the QTL for the other trait and the parents of the F2 had divergent means for each trait. The loss of QTL heterozygosity was much greater with MAM than with PAM or RM. Consequently, the advantage of MAM over RM dissipated after 5–7 generations. Differences were small between selection responses with PAM and RM. The MAM procedure can enhance short-term selection response for two traits when selection is not stringent, h 2 is low, and the means of the parents of the F2 are equal for each trait. Received: 10 June 1998 / Accepted: 5 August 1998  相似文献   

4.
Xanthobacter tagetidis grew as a chemolithotrophic autotroph on thiosulfate and other inorganic sulfur compounds, as a heterotroph on thiophene-2-carboxylic acid, acetic acid and α-ketoglutaric acid, and as a mixotroph on thiosulfate in combination with thiophene-2-carboxylic acid and/or acetic acid. Autotrophic growth on one-carbon organosulfur compounds, and intermediates in their oxidation are also reported. Thiosulfate enhanced the growth yields in mixotrophic cultures, presumably by acting as a supplementary energy source, since ribulose bisphosphate carboxylase was only active in thiosulfate-grown cells and was not detected in mixotrophic cultures using thiosulfate with thiophene-2-carboxylic acid. Bacteria grown on thiophene-2-carboxylic acid also oxidized sulfide, thiosulfate and tetrathionate, indicating these as possible sulfur intermediates in thiophene-2-carboxylic acid degradation. Thiosulfate and tetrathionate were oxidized completely to sulfate and, consequently, did not accumulate as products of thiophene-2-carboxylic acid oxidation in growing cultures. K m and V max values for the oxidation of thiosulfate, tetrathionate or sulfide were 13 μM and 83 nmol O2 min–1 (mg dry wt.)–1, respectively; thiosulfate and tetrathionate became autoinhibitory at concentrations above 100 μM. The true growth yield (Ymax) on thiophene-2-carboxylic acid was estimated from chemostat cultures (at dilution rates of 0.034–0.094 h–1) to be 112.2 g mol–1, with a maintenance coefficient (m) of 0.3 mmol thiophene-2-carboxylic acid (g dry wt.)–1 h–1, and the maximum specific growth rate (μmax) was 0.116 h–1. Growth in chemostat culture at a dilution rate of 0.041 h–1 indicated growth yields [g dry wt. (mol substrate)–1] of 8.1 g (mol thiosulfate)–1, 60.9 g (mol thiophene-2-carboxylic acid)–1, and 17.5 g (mol acetic acid)–1, with additive yields for growth on mixtures of these substrates. At a dilution rate of 0.034 h–1, yields of 57.8 g (mol α-ketoglutaric acid)–1 and 60.7 g (mol thiophene-2-carboxylic acid)–1 indicated some additional energy conservation from oxidation of the thiophene-sulfur. SDS-PAGE of cell-free preparations indicated a polypeptide (M r, 21.0 kDa) specific to growth on thiophene-2-carboxylic acid for which no function can yet be ascribed: no metabolism of thiophene-2-carboxylic acid by cell-free extracts was detected. It was shown that X. tagetidis exhibits a remarkable degree of metabolic versatility and is representative of facultatively methylotrophic and chemolithotrophic autotrophs that contribute significantly to the turnover of simple inorganic and organic sulfur compounds (including substituted thiophenes) in the natural environment. Received: 1 July 1997 / Accepted: 3 November 1997  相似文献   

5.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

6.
Nonlinear dynamic properties were analyzed on the EEG and filtered rhythms recorded from healthy subjects and epileptic patients with complex partial seizures. Estimates of correlation dimensions of control EEG, interictal EEG and ictal EEG were calculated. The values were demonstrated on topograms. The delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–40 Hz) components were obtained and considered as signals from the cortex. Corresponding surrogate data was produced. Firstly, the influence of sampling parameters on the calculation was tested. The dimension estimates of the signals from the frontal, temporal, parietal and occipital regions were computed and compared with the results of surrogate data. In the control subjects, the estimates between the EEG and surrogate data did not differ (P > 0.05). The interictal EEG from the frontal region and occipital region, as well as its theta component from the frontal region, and temporal region, showed obviously low dimensions (P < 0.01). The ictal EEG exhibited significantly low-dimension estimates across the scalp. All filtered rhythms from the temporal region yielded lower results than those of the surrogate data (P < 0.01). The dimension estimates of the EEG and filtered components markedly changed when the neurological state varied. For each neurological state, the dimension estimates were not uniform among the EEG and frequency components. The signal with a different frequency range and in a different neurological state showed a different dimension estimate. Furthermore, the theta and alpha components demonstrated the same estimates not only within each neurological state, but also among the different states. These results indicate that the theta and alpha components may be caused by similar dynamic processes. We conclude that the brain function underlying the ictal EEG has a simple mechanism. Several heterogeneous dynamic systems play important roles in the generation of EEG. Received: 10 December 1999 / Accepted in revised form: 8 May 2000  相似文献   

7.
The effect of changing growth rate and oxygen transfer rate (OTR) on Debaryomyces hansenii physiology was studied using xylose-limited and oxygen-limited chemostat cultures, respectively, and complemented with enzymatic assays. Under xylose-limited chemostat (oxygen-excess), neither ethanol nor xylitol was produced over the entire range of dilution rate (D). The maximal volumetric biomass productivity was 2.5 g l–1 h–1 at D =0.25 h–1 and cell yield was constant at all values of D. The respiratory rates and xylose consumption rate increased linearly with growth rate but, above 0.17 h–1, oxygen consumption rate had a steeper increase compared to carbon dioxide production rate. Enzymatic analysis of xylose metabolism suggests that internal fluxes are redirected as a function of growth rate. For values of D up to 0.17 h–1, the xylose reductase (XR) titre is lower than the xylitol dehydrogenase (XDH) titre, whereas above 0.17 h–1 XR activity is about twice that of XDH and the NADPH-producing enzymes sharply increase their titres indicating an internal metabolic flux shift to meet higher NADPH metabolic requirements. Moreover, the enzymes around the pyruvate node also exhibited different patterns if D was above or below 0.17 h–1. Under oxygen-limited chemostat (xylose-excess) the metabolism changed drastically and, due to oxidative phosphorylation limitation, cell yield decreased to 0.16 g g–1 for an OTR of 1.4 mmol l–1 h–1 and xylitol became the major extracellular product along with minor amounts of glycerol. The enzymatic analysis revealed that isocitrate dehydrogenase is not regulated by oxygen, whereas XR, XDH and the NADPH-producing enzymes changed their levels according to oxygen availability. Electronic Publication  相似文献   

8.
 The thermal properties of atmospheric air surrounding the human body at various altitudes are characterized with a system of parameters. This system comprises resistance of the air to convective heat transfer h c –1, °C (W/m2)−1 and to water vapour transfer h D –1, s/m. The concept of ’evaporative resistance’h e –1, hPa (W/m2)−1) following the similarity of the processes is introduced. In obtaining the altitude dependencies of investigated paramters, a respective heat transfer equation expressing the rate of heat exchange at the boundary body surface – ambient air is applied. The use of the body thermal state of the established altitude dependencies is discussed. The concept of ’thermal stability’ related to the evaporative resistance parameter h e –1 is introduced. This parameter is assumed as: (1) an indicator of the human body thermal stability and (2) distributor and predictor of environmental influence on the body thermal state. Received: 5 January 1996 / Accepted 5 November 1996  相似文献   

9.
The influence of (NH4)2SO4 concentration and dilution rate (D) on actual and potential H2 photoproduction has been studied in ammonium-limited chemostat cultures of Rhodobacter capsulatus B10. The actual H2 production in a photobioreactor was maximal (approx. 80 ml h−1 l−1) at D = 0.06 h−1 and 4 mM (NH4)2SO4. However, it was lower than the potential H2 evolution (calculated from hydrogen evolution rates in incubation vials), which amounted to 100–120 ml h−1 l−1 at D = 0.03–0.08 h−1. Taking into account the fact that H2 production in the photobioreactor under these conditions was not limited by light or lactate, another limiting (inhibiting) factor should be sought. One possibility is an inhibition of H2 production by the H2 accumulated in the gas phase. This is apparent from the non-linear kinetics of H2 evolution in the vials or from its inhibition by the addition of H2; initial rates were restored in both cases after the vials had been refilled with argon. The actual H2 production in the photobioreactor at D = 0.06 h−1 was shown to increase from approximately 80 ml h−1 l−1 to approximately 100 ml h−1 l−1 under an argon flow at 100 ml min−1. Under maximal H2 production rates in the photobioreactor, up to 30% of the lactate feedstock was utilised for H2 production and 50% for biomass synthesis. Received: 22 April 1997 / Received revision: 14 July 1997 / Accepted: 27 July 1997  相似文献   

10.
Published data on the association between β1-adrenergic receptor gene polymorphisms and idiopathic dilated cardiomyopathy (IDCM) risk are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed. A total of 12 case–control studies including 2642 cases and 3136 controls provided data on the association between β1-adrenergic receptor gene polymorphisms and susceptibility to IDCM. Overall, no significantly elevated risk was associated with Arg389Gly polymorphisms for all genetic models. In the subgroup analysis by ethnicity, no statistically increased risk was found for Gly389Gly versus Arg389Arg (OR 0.73; 95% CI 0.54–0.99; P h = 0.35) and Gly389Gly versus Arg389Arg + Arg389Gly (OR 0.75; 95% CI 0.55–1.01; P h = 0.52) among Europeans. Meanwhile, significantly increased risk was found among Asians based on the relatively small sample size. Further, significantly elevated IDCM risk was associated with Ser49Gly polymorphisms for all genetic models. When stratified by ethnicity, statistical association was found among Asians for Gly49Gly versus Ser49Ser (OR 4.56; 95% CI 1.36–15.23; P h = 0.10) and Gly49Gly versus Ser49Ser + Ser49Gly (OR 4.49; 95% CI 1.33–15.15; P h = 0.12), but not among Europeans. In summary, this meta-analysis suggests that no statistically increased risk was found between β1-adrenergic receptor gene polymorphisms and susceptibility to IDCM among Europeans.  相似文献   

11.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

12.
We studied the functional response of the freshwater unionid bivalve Anodonta anatina, feeding on five phytoplankton strains differing in food quality: the small green alga Scenedesmus obliquus, a toxic and a non-toxic strain of the filamentous cyanobacterium Planktothrix agardhii and a toxic and a non-toxic strain of the coccoid cyanobacterium Microcystis aeruginosa. On S. obliquus, A. anatina had a type II functional response with a maximum mass-specific ingestion rate (IRmax) of 5.24 mg C g DW−1 h−1 and a maximum mass-specific clearance rate (CRmax) of 492 (±38) ml g DW−1 h−1, the highest values for all the phytoplankton strains that were investigated. On toxic and non-toxic P. agardhii filaments, A. anatina also had a type II functional response, but IRmax and CRmax were considerably lower (IRmax 1.90 and 1.56 mg C g DW−1 h−1; CRmax 387 (±97) and 429 (±71) ml g DW−1 h−1, respectively) than on S. obliquus. Toxicity of P. agardhii had no effect on the filtration rate of the mussels. On the non-toxic M. aeruginosa (small coccoid cells), we also observed a type II functional response, although a type I functional response fitted almost as good to these data. For the colonial and toxic M. aeruginosa, a type I functional response fitted best to the data: IR increased linearly with food concentration and CR remained constant. CRmax and IRmax values for the (colonial) toxic M. aeruginosa (383 (±40) ml g DW−1 h−1; 3.7 mg C g DW−1 h−1) demonstrated that A. anatina filtered and ingested this cyanobacterium as good as the other cyanobacterial strains. However, on the non-toxic M. aeruginosa we observed the lowest CRmax of all phytoplankters (246 (±23) ml g DW−1 h−1, whereas IRmax was similar to that on toxic M. aeruginosa. The high maximum ingestion rates on S. obliquus and M. aeruginosa indicate a short handling time of these phytoplankton species. The high clearance rates on S. obliquus, toxic M. aeruginosa and P. agardhii reflect a high effort of the mussels to filter these particles out of the water column at low concentrations. The low clearance rates on non-toxic M. aeruginosa may be explained by the small size and coccoid form of this cyanobacterium, which may have impaired A. anatina to efficiently capture the cells. Although A. anatina had relatively high maximum clearance rates on non-toxic and toxic P. agardhii, this cyanobacterium does not seem to be a good food source, because of the observed high rates of pseudofaeces production and hence low ingestion rates.  相似文献   

13.
Elevated values of molar growth yield (Yx/s = 14–26 g mol–1) were obtained during exponential growth (μ > 0.4 h–1) of Zymomonas mobilis ATCC 29191 by using reduced concentrations of glucose (6.25–100 mM) and increased oxygen supply (E h > 300 mV) in the growth medium, as compared to the Yx/s of anaerobic exponential growth (8–10 g mol–1). Aerobically grown cells showed an increased maximum growth rate (μmax), and a reduced specific glucose consumption rate (qs), and specific ethanol formation rate (qp), thus demonstrating a more pronounced energy-coupling growth under oxic conditions. These results can be neither explained by the concept of a solely operating Entner-Doudoroff pathway as an ATP source in aerobically growing cultures of Z. mobilis nor considered to be consistent with existing data on the lack of the Pasteur effect in this bacterium. Therefore, the results rather give evidence for the essential contribution of aerobic ATP generation under the reported conditions. Received: 24 September 1996 / Accepted: 9 December 1996  相似文献   

14.
Geotrichum klebahnii ATCC 42397 produces a protopectinase (PPase-SE) with polygalacturonase (PGase) activity. The microorganism was aerobically cultivated in synthetic media. Glucose, fructose and xylose yielded the highest enzyme levels (10–11 PGase units ml−1). Galacturonic acid repressed enzyme production and no growth was obtained with disaccharides and pectin. Specific enzyme activity obtained in an O2-limited culture was similar to that found in nonlimited ones. A growth yield (Y x/s) of 0.49 g of cell dry weight per gram of glucose consumed was obtained in a typical batch bioreactor culture. Enzyme production was growth associated, and no major products other than biomass and CO2 were detected. The volumetric enzyme activity reached a maximum around D=0.3–0.4 h−1 in glucose-limited continuous cultures. However, it varied strongly (together with microorganism morphology) even after retention times ≥8 at any D tested (0.035–0.44 h−1) though the rest of the culture variables remained fairly constant. No correlation between morphology and enzyme activity could be obtained. Enzyme production was poor in urea- and vitamin-limited continuous cultures. In all cases, biomass and CO2 accounted for ≅100% of carbon recovery though Y x/s values were different. Journal of Industrial Microbiology & Biotechnology (2000) 25, 260–265. Received 20 April 2000/ Accepted in revised form 15 September 2000  相似文献   

15.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

16.
Repeated electroconvulsive shock is an effective treatment for affective disorders. Striatum, hippocampus and brainstem are involved in affective disorders. Sodium–potassium/ATPase is of paramount importance for the proper functioning of the brain and its involvement in the affective disorders has been claimed for a long time. Sodium–potassium/ATPase has an extracellular regulatory binding site to which cardiotonic glycosides, such as ouabain, bind to, thus regulating the activity of the enzyme. Endogenous “ouabain-like” substances exist in the brain and their actions on the sodium–potassium/ATPase resemble ouabain biological properties. The aim of this work was to determine if electroconvulsive shock (ECS) would induce changes in the high-affinity binding of ouabain to the sodium–potassium/ATPase from rat brain regions. Adult, male Wistar rats received one (ECS×1 group) or seven electroshocks (ECS×7 group) delivered daily through ear-clips electrodes. Control rats received the same manipulations; however, no current was delivered through the electrodes (SHAM×1 and SHAM×7 groups). All groups were sacrificed 24 h after the last ECS session. The B max and K D of high-affinity [3H]-ouabain binding were determined in crude membrane preparations from the striatum, hippocampus and brainstem. The results obtained showed a statistically significant increase in the affinity of [3H]-ouabain (lower K D) to striatal membranes in those rats receiving seven ECS. In the striatum there was no change in the K D after one ECS; as well as there was no change in the B max after a single or seven ECS. High-affinity [3H]-ouabain binding to hippocampus and brainstem did not reveal any significant differences either in K D or B max after one or seven ECS. The increased affinity of ouabain to the striatal sodium–potassium/ATPase induced by repeated ECS suggests an increased interaction in vivo of the endogenous “ouabain-like” substances with the enzyme and the involvement of the extracellular regulatory allosteric ouabain binding site in the striatal sodium–potassium/ATPase in the effects of electroconvulsive shock.  相似文献   

17.
The rabbit Na+/glucose cotransporter (SGLT1) exhibits a presteady-state current after step changes in membrane voltage in the absence of sugar. These currents reflect voltage-dependent processes involved in cotransport, and provide insight on the partial reactions of the transport cycle. SGLT1 presteady-state currents were studied as a function of external Na+, membrane voltage V m , phlorizin and temperature. Step changes in membrane voltage—from the holding V h to test values, elicited transient currents that rose rapidly to a peak (at 3–4 msec), before decaying to the steady state, with time constants τ≈4–20 msec, and were blocked by phlorizin (K i ≈30 μm). The total charge Q was equal for the application of the voltage pulse and the subsequent removal, and was a function of V m . The Q-V curves obeyed the Boltzmann relation: the maximal charge Q max was 4–120 nC; V 0.5, the voltage for 50% Q max was −5 to +30 mV; and z, the apparent valence of the moveable charge, was 1. Q max and z were independent of V h (between 0 and −100 mV) and temperature (20–30°C), while increasing temperature shifted V 0.5 towards more negative values. Decreasing [Na+] o decreased Q max, and shifted V 0.5 to more negative voltages 9by −100 mV per 10-fold decrease in [Na+] o ). The time constant τ was voltage dependent: the τ-V relations were bell-shaped, with maximal τmax 8–20 msec. Decreasing [Na+] o decreased τmax, and shifted the τ-V curves towards more negative voltages. Increasing temperature also shifted the τ-V curves, but did not affect τmax. The maximum temperature coefficient Q 10 for τ was 3–4, and corresponds to an activation energy of 25 kcal/mole. Simulations of a 6-state ordered kinetic model for rabbit Na+/glucose cotransport indicate that charge-movements are due to Na+-binding/dissociation and a conformational change of the empty transporter. The model predicts that (i) transient currents rise to a peak before decay to steady-state; (ii) the τ-V relations are bell-shaped, and shift towards more negative voltages as [Na+] o is reduced; (iii) τmax is decreased with decreasing [Na+] o ; and (iv) the Q-V relations are shifted towards negative voltages as [Na+] o is reduced. In general, the kinetic properties of the presteady-state currents are qualitatively predicted by the model. Received: 12 August 1996/Revised: 30 September 1996  相似文献   

18.
The growth performance of malolactic fermenting bacteria Oenococcus oeni NCIMB 11648 and Lactobacillus brevis X2 was assessed in continuous culture. O. oeni grew at a dilution rate range of 0.007 to 0.052 h−1 in a mixture of 5:6 (g l−1) of glucose/fructose at an optimal pH of 4.5, and L. brevis X2 grew at 0.010 to 0.089 h−1 in 10 g l−1 glucose at an optimal pH of 5.5 in a simple and safe medium. The cell dry weight, substrate uptake and product formation were monitored, as well as growth kinetics, yield parameters and fermentation balances were also evaluated under pH control conditions. A comparison of growth characteristics of two strains was made, and this showed significantly different performance. O. oeni has lower maximum specific growth rate (μmax=0.073 h−1), lower maximum cell productivity (Q x max=17.6 mg cell l−1 h−1), lower maximum biomass yield (Y x/s max=7.93 g cell mol−1 sugar) and higher maintenance coefficient (m s=0.45 mmol−1 sugar g−1 cell h−1) as compared with L. brevis X2max=0.110 h−1; Q x max=93.2 g−1 cell mol−1 glucose; Y x/s max=22.3 g cell mol−1 glucose; m s=0.21 mmol−1 glucose g−1 cell h−1). These data suggest a possible more productive strategy for their combined use in maturation of cider and wine.  相似文献   

19.
Biodegradation of BTEX by a microbial consortium isolated from a closed municipal landfill was studied using respirometric techniques. The kinetics of biodegradation were estimated from experimental oxygen uptake data using a nonlinear parameter estimation technique. All of the six compounds were rapidly degraded by the microbial culture and no substrate inhibition was observed at the concentration levels examined (200 mg L−1 as COD). Microbial growth and contaminant degradation were adequately described by the Monod equation. Considerable differences were observed in the rates of BTEX biodegradation as seen from the estimates of the kinetic parameters. A three-fold variation was seen in the values of the maximum specific growth rate, μmax. The highest value of μmax was 0.389 h−1 for p-xylene while o-xylene was characterized by a μmax value of 0.14 h−1, the lowest observed in this study. The half saturation coefficient, K s, and the yield coefficient, Y, varied between 1.288–4.681 mg L−1 and 0.272–0.645 mg mg−1, respectively. Benzene and o-xylene exhibited higher resistance to biodegradation while toluene and p-xylene were rapidly degraded. Ethylbenzene and m-xylene were degraded at intermediate rates. In biodegradation experiments with a multiple substrate matrix, substrate depletion was slower than in single substrate experiments, suggesting an inhibitory nature of substrate interaction. Received 15 February 1998/ Accepted in revised form 5 July 1998  相似文献   

20.
Heading date is one of the importance agronomic traits. A library consisting of 1,123 single segment substitution lines (SSSLs) in the same genetic background of an elite rice variety Huajingxian 74 (HJX74) was evaluated for heading date (HD). From this library, the SSSL W06-26-35-1-5-2 with the substituted interval of PSM152–PSM154–PSM155–RM25–RM547–RM72–RM404 was found having a gene, which performed stable and late heading in the different environments of Shandong and Hainan provinces. To map the gene governing heading date, the SSSL W06-26-35-1-5-2 was crossed with the recipient HJX74 to develop an F2 segregating population. The distribution of late and early heading plants in this population fitted a segregation ratio of 3:1, indicating the late heading was controlled by a dominant gene. The gene locus for heading date was tentatively designated as qHD8-1. Using a random sample of 460 individuals from the F2 population, the qHD8-1 was narrowed down to a region flanking by two SSR markers PSM155 and RM547. For fine mapping of qHD8-1, a large F2:3 segregating population of 3,000 individuals were developed from F2 plants heterozygous in the PSM155–RM547 region. Recombinants analysis further mapped qHD8-1 to an interval of region 26 kb with markers RM22492 and P23 bounded on the left and right sides, respectively. Sequence analysis of this 26-kb fragment revealed that it contains five putative open reading frames, which were regarded as candidates of qHD8-1. These results will be useful in cloning of the qHD8-1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号