首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of N-acetyl-chitotriose ((GlcNAc)3) with human lysozyme [EC 3.2.1.17] was studied at various pH values by measuring changes in the circular dichroic (CD) band at 294 or 255 nm and the data were compared with the results for hen and turkey lysozymes reported previously (Kuramitsu et al. (1974) J. Biochem.76, 671-683; Kuramitsu et al. (1975) J. Biochem. 77, 291-301). The pH dependence of the binding constant of (GlcNAc)3 to human lysozyme was different from those for hen and turkey lysozymes. The catalytic carboxyls of human lysozyme, Asp 52 and Glu 35, were not perturbed on binding of (GlcNAc)3. This is consistent with the previous findings that the macroscopic pK values of Asp 52 and Glu 35 of human lysozyme are 3.4 and 6.8 at 0.1 ionic strength and 25 degrees and were unchanged on complexing with (GlcNAc)3. An ionizable group with pK 4.5, which participates in the binding of (GlcNAc)3 to hen lysozyme and was assigned as Asp 101, did not participate in the binding of the saccharide to human lysozyme. Between pH 9 and 11, the binding constants of (GlcNAc)3 to hen lysozyme remained unchanged, whereas perturbation of an ionizable group with pK 10.5 to 10.0 was observed for human lysozyme. This group may be Tyr 62 in the active-site cleft. The binding constants of (GlcNAc)3 to human lysozyme molecules having different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated using the binding constants obtained in the present experiments and the microscopic ionization constants of the catalytic carboxyls obtained previously. All four species of human lysozyme had similar binding constants to (GlcNAc)3. This result is different from those for hen and turkey lysozymes.  相似文献   

2.
The binding constants of N-acetylglucosamine (G1cNAc) and its methyl alpha- and beta- glycosides to hen and turkey egg-white lysozymes [EC 3.2.1.17], in the latter of which Asp 101 is replaced by Gly, were determined at various pH values by measuring changes in the circular dichroic (DC) band at 295 nm. The binding of beta-methyl-G1cNAc to turkey and hen lysozymes perturbed the pK value of Glu 35 from 6.0 to 6.5, the pK value of Asp 52 from 3.5 to 3.9, and the pK value of Asp 66 from 1.3 to 0.7. In addition, perturbation of the pK value of Asp 101 from 4.4 to 4.0 was observed in the binding of this saccharide to hen lysozyme. The binding of alpha-methyl-GlcNAc to hen and turkey lysozymes perturbed the pK value of Glu 35 to the alkaline side by about 0.5 pH unit, the pK value of Asp 66 to the acidic side by about 0.5 pH unit, and the pK value (4.4) of an ionizable group to the acidic side by about 0.6 pH unit. The last ionizable group was tentatively assigned to Asp 48. The pK value of Asp 52 was not perturbed by the binding of this saccharide. The pH dependence curves for the binding of GlcNAc to hen and turkey lysozymes were very similar and it was suggested that Asp 48, in addition to Asp 66, Asp 52, and Glu 35, is perturbed by the binding of GlcNAc.  相似文献   

3.
Temperature jump and stopped flow methods were used to study at pH 7.0 the temperature dependence of elementary steps of the reactions of lysozyme with the beta(1 yields 4)-linked trimer, tetramer, and hexamer of N-acetylglucosamine. The steady state rate of cleavage of the hexasaccharide was determined as a function of temperature (5 degrees-40 degrees) and pH(2 to 8) in H-2O solution and as a function of pD(2.5 to 9.5) at 40 degrees in D-2O solution. The apparent enthalpies of the two ionizations of apparent pK 3.8 and 6.7 observed in measurements of k are 0 to 2 kcal/mol. The energy of activation determined for the pH optimum is 21.5 kcal/mol. The solvent deuterium isotope effect measured for k at the pH (pD) optimum is 1.5 And reflects isotope effects on pre-equilibrium steps and on the rate-determining step. Transfer from H-2O to D-2O solution produces 0.2 to 0.4 kcal/mol more negative free energies of saccharide binding and no changes in the enthalpies of binding. Pre-steady state, steady state, and equilibrium measurements indicate a pathway for the reaction of lysozyme with hexasaccharide. The results define for this mechanism the complete free energy profile and an essentially complete enthalpy profile. Three of the five observable ES complexes are present at nearly equal concentrations. The free energies of the transition states are within a range of 3 kcal. The enthalpies of productive enzyme-substrate complexes are about 5 kcal/mol greater than the enthalpies of nonproductive complexes. Changes in tryptophan fluorescence were observed for each elementary step, and changes in pK of Glu-35 for the isomerizations of nonproductive and productive complexes. The signal changes during formation of nonproductive complexes are the same for the oligosaccharides (ClcNAc)3 to (GlcNAc)6. The changes for productive complexes are similar but not identical with saccharides (GlcNAc)4 to (GlcNAc)6. Correlations of the present data with previous crystallographic and solution measurements indicate the structures of productive and nonproductive ES complexes and suggest that full interaction of the substrate with the enzyme active site is established in the rate-determining step.  相似文献   

4.
The binding constants of alpha- and beta-GlcNAc to hen and turkey lysozymes [EC 3.2.1.17] were determined at various pH's using the method proposed by Ikeda and Hamaguchi (1975) J. Biochem. 77, 1-16). The pH dependence of the binding of beta-GlcNAc to hen lysozyme was essentially the same as that for turkey lysozyme. The pH dependence curves of the binding constants of beta-GlcNAc to hen and turkey lysozymes were interpreted in terms of the participation of Glu 35 (pK 6.0), Asp 52 (pK 3.5), Asp 48 (pK 4.5), and Asp 66 (pK 1.5). The binding constants of alpha-GlcNAc to hen and turkey lysozymes were the same below pH 3.5 but were different above this pH. The main participant residues in the binding of alpha-GlcNAc were Glu 35, Asp 48, and Asp 66 for hen lysozyme and Glu 35 and Asp 66 for turkey lysozyme. The results obtained here were well explained by the following assumptions: (1) above about pH 4, alpha-GlcNAc binds to hen lysozyme in both alpha- and beta-modes, which correspond to the binding orientation of alpha-GlcNAc and that of beta-GlcNAc, respectively, as determined by X-ray crystallographic studies, but it binds predominantly in the beta-mode below about pH 4, (2) beta-GlcNAc binds to hen and turkey lysozymes predominantly in the beta-mode above about pH 4 and in both alpha- and beta-modes below pH 4, and (3) alpha-GlcNAc binds to turkey lysozyme predominantly in the beta-mode over the whole pH range studied.  相似文献   

5.
The interactions of the substrate analogues, GlcNAc, beta-methyl GlcNAc, (GlcNAc)2, and (GlcNAc)3, with turkey egg-white lysozyme [ED 3.2.1.17], in which the Asp 101 of hen lysozyme is replaced by Gly, were studied at various pH values by measuring changes in the circular dichroic (CD) band at 295 nm. Results were compared with those for hen egg-white lysozyme. The modes of binding of these substrate analogues to turkey lysozyme were very similar to those hen lysozyme except for the participation of Asp 101 in hen lysozyme. The ionization constants of the catalytic carboxyls, Glu 35 and Asp 52, in the turkey lysozyme-(GlcNAc)3 complex were determined by measuring the pH dependence of the CD band at 304 nm, which originates from Trp 108 near the catalytic carboxyls. The ionization behavior of the catalytic carboxyls of turkey lysozyme in the presence and absence of (GlcNAc)3 was essentially the same as that for hen lysozyme. The pH dependence of the binding constant of (GlcNAc)3 to hen lysozyme was compared with that to turkey lysozyme between pH 2 and 8. The pH dependence of the binding constant for (GlcNAc)3 to turkey lysozyme could be interpreted entirely in terms of perturbation of catalytic carboxyls. In the case of hen lysozyme, it was interpreted in terms of perturbation of the catalytic carboxyls and Asp 101 in the substrate-binding site. The pK values of Asp 101 in hen lysozyme and the hen lysozyme-(GLcNAc)3 complex were 4.5 and 3.4, respectively. The binding constants of (GlcNAc)3 to lysozyme molecules with different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated. The binding constant of lysozyme, in which Asp 52 and Glu 35 are deprotonated, to (GlcNAc)3 was the smallest. The other three species had similar binding constant to (GlcNAc)3.  相似文献   

6.
Difference spectra associated with changes in pH and with binding of saccharides have been recorded for hen egg white (HEW) lysozyme, turkey egg white (TEW) lysozyme, and for the derivatives of the hen protein in which Tre-62 or Trp-108 had been oxidized specifically to oxindolealanine to give the Oxa-62 or Oxa-108-proteins. Identical pH difference spectra were obtained for HEW, TEW, and Oxa-62-lysozymes. Oxidation of Trp-108 is reflected in both the high and low pH (pH 7 versus 5 and pH 2 versus 5) difference spectra. The magnitude of the low pH difference spectrum is enhanced by binding of saccharide for HEW and Oxa-62-lysozymes but not for TEW lysozyme. The shapes and magnitudes of saccharide binding difference spectra are affected by oxidation of residues 62 or 108. These results can be interpreted in terms of the perturbations responsible for the lysozyme difference spectra. The pH 7 versus 5 difference spectrum results from perturbation by Glu-35 of Trp-108 and another tryptophan, probably Trp-63. Perturbation of Trp-108 and one or more other tryptophan residues by several carboxylate groups is responsible for the low pH difference spectra of the unliganded HEW and TEW lysozyme molecules. Perturbation of Trp-108 makes a principal contribution to the saccharide-binding difference spectrum. Perturbation of the Oxa-108 chromophore by ionization of Glu-35 or by saccharide binding produces absorbance changes in the 250 to 265 nm region.  相似文献   

7.
The pH dependence of the binding constant of (GlcNAc)3 to Asp 52-esterified lysozyme was determined by the fluorescence technique. The pK values of Asp 101 in the modified lysozyme and its complex with (GlcNAc)3 were determined to be 4.5 and 3.6, respectively, at 25 degrees C and 0.1 ionic strength. This result is different from that obtained by Parsons and Raftery ((1972) Biochemistry 11, 1633--1638), who observed no pK shift of Asp 101. The macroscopic pK value of Asp 52 in intact lysozyme determined by them using the pH difference titration data of Asp 52-esterified lysozyme relative to intact lysozyme ((1972) Biochemistry 11, 1623--1629) was 4.5, which is higher by about one pH unit than the pK value determined by our group (Kuramitsu et al. (1974) J. Biochem. 76, 671--683; (1977) ibid. 82, 585--597; (1978) ibid. 83, 159--170. We found that their pH difference titration data in the absence and presence of saccharides can be consistently interpreted in terms of our pK values of Asp 52, Glu 35, and Asp 101, if we assume that the pK value of another ionizable group (probably Asp 48) is perturbed on esterification of Asp 52.  相似文献   

8.
Lanthanide ions and the N-acetylglucosamine (GlcNAc) sugars are able to bind simultaneously to hen egg-white lysozyme (EC 3.2.1.17). The present study characterizes the properties of the ternary complexes with lysozyme, which involve up to seven paramagnetic lanthanides and two diamagnetic lanthanides, together with alpha GlcNAc, beta GlcNAc, alpha MeGlcNAc and beta MeGlcNAc. pH titrations and binding titrations of the GlcNAc sugars with lysozyme-La(III) complexes show that the GlcNAc sugars bind to at least two independent sites and that one of them competes with La(III) for binding to lysozyme. Given the known binding site of lanthanides at Asp-52 and Glu-35, the competitive binding site of GlcNAc is identified as subsite E. A simple analysis of the paramagnetic-lanthanide-induced shifts shows that the GlcNAc sugar binds in subsite C, in accordance with crystallographic results [Perkins, Johnson, Machin & Phillips (1979) Biochem. J. 181, 21-36]. This finding was refined by several computer analyses of the lanthanide-induced shifts of 17 proton and carbon resonances of beta MeGlcNAc. Good fits were obtained for all the signals, except for two that were affected by exchange broadening phenomena. No distinction could be made between a fit for a two-position model of Ln(III) binding with axial symmetry to lysozyme, according to the crystallographic result, or a one-position model with axial symmetry where the Ln(III) is positioned mid-way between Asp-52 and Glu-35. Although this work establishes the feasibility of lanthanide shift reagents for study of protein-ligand complexes, further work is required to establish the manner in which lanthanides bind to lysozyme in solution.  相似文献   

9.
The interactions of the substrate analogs beta-methyl-GlcNAc, (GlcNAc)2, and (GlcNAc)3 with hen egg-white lysozyme [EC 3.2.1.17] in which an ester linkage had been formed between Glu 35 and Trp 108 (108 ester lysozyme), were studied by the circular dichroic and fluorescence techniques, and were compared with those for intact lysozyme. The binding constants of beta-methyl-GlcNAc and (GlcNAc)2 to 108 ester lysozyme were essentially the same as those for intact lysozyme in the pH range of 1 to 5. Above pH 5, the binding constants of these saccharides to 108 ester lysozyme did not change with pH, while the binding constants to intact lysozyme decreased. This indicates that Glu 35 (pK 6.0 in intact lysozyme) participates in the binding of these saccharides. The extent and direction of the pK shifts of Asp 52 (pK 3.5), Asp 48 (pK 4.4), and Asp 66 (pK 1.3) observed when beta-methyl-GlcNAc is bound to 108 ester lysozyme were the same as those for intact lysozyme. The participation of Asp 101 and Asp 66 in the binding of (GlcNAc)2 to 108 ester lysozyme was also the same as that for intact lysozyme. These findings indicate that the conformations of subsites B and C are not changed by the formation of the ester linkage. On the other hand, the binding constants of (GlcNAc)3 to 108 ester lysozyme were higher than those for intact lysozyme at all pH values studied. This result is interpreted in terms of an increase in the affinity for a GlcNAc residue of subsite D, which is situated near the esterified Glu 35.  相似文献   

10.
The pH dependence of the binding of dye, Beibrich Scarlet, to hen egg-white lysozyme[EC 3.2.1.17] was studied at ionic strength 0.3 and 25 degrees by following circular dichroic (CD)bands originating from the bound dye. This binding involved one of the catalytic groups, Glu 35. The effect of the binding of N-acetylglucosamine (GlcNAc), its dimer or trimer on the binding of this dye was also studied at pH 7.5 by measuring changes in the CD bands of the dye bound to lysozyme. It was shown that there are two sites for simultaneous binding of these saccharides in the lysozyme molecule. The stronger binding of the saccharide was noncompetitive and the weaker binding was competitive with dye binding. The binding constants for the stronger binding site (the upper portion of lysozyme cleft) were in good agreement with those previously determined by following changes in the tryptophyl CD bands of lysozyme. The binding constants to the weaker site were about 1.1 x 10(-4), 5 x 10(2), and 5M(-1) for the trimer, dimer, and monomer of GlcNAc, respectively. Assuming that the trimer, dimer, and monomer occupy subsites D, E, and F; E and F; and E, respectively, the unitary free energies of saccharide binding were estimated to be about --1.9, --3.3, and --2.7 kcal/mole for D, E, and F, respectively.  相似文献   

11.
In the reaction of the intramolecular cross-linking between Lys-13 (epsilon-NH3+) and Leu-129 (alpha-COO-) in lysozyme using imidazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride [Yamada, H., Kuroki, R., Hirata, M., & Imoto, T. (1983) Biochemistry 22, 4551-4556], it was found that two-thirds of the protein (both the recovered and cross-linked lysozymes) showed a lower affinity than the rest against chitin-coated Celite, an affinity adsorbent for lysozyme. The protein with the reduced affinity was separated on chitin-coated Celite affinity chromatography and found to be slightly different from native lysozyme in the elution position of the tryptic peptide of Ile-98-Arg-112 on reversed-phase high-performance liquid chromatography. In contrast with native lysozyme, the limited hydrolysis of this abnormal tryptic peptide of Ile-98-Arg-112 in 6 N HCl at 110 degrees C gave a considerable amount of beta-aspartylglycine. Therefore, it was concluded that two-thirds of the protein obtained from this reaction possessed the beta-aspartylglycyl sequence at Asp-101-Gly-102. As a result, we obtained four lysozymes from this reaction, the derivative with the beta-aspartyl sequence at Asp-101 (101-beta-lysozyme), the cross-linked derivative between Lys-13 and Leu-129 (CL-lysozyme), the CL-lysozyme derivative with the beta-aspartyl sequence at Asp-101 (101-beta-CL-lysozyme), and native lysozyme. In the ethyl esterification of Asp-52 in lysozyme with triethyloxonium fluoroborate [Parsons, S. M., Jao, L., Dahlquist, F. W., Borders, C. L., Jr., Groff, T., Racs, J., & Raftery, M. A. (1969) Biochemistry 8, 700-712; Parsons, S. M., & Raftery, M. A. (1969) Biochemistry 8, 4199-4205], the same bond rearrangement was detected in the same ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The difference spectra of hen and turkey egg-white lysozymes [EC 3.2.1.17] produced by acidification were measured. The difference spectra of both lysozymes had peaks at 295 and 301 nm which are characteristic of tryptophyl residues. The pH dependence curves of the extinction differences (delta eplision) at 301 nm and 295 nm for hen lysozyme were identical with the corresponding curves for turkey lysozyme. The pH dependence of delta eplision at 301 nm was analyzed assuming that the extinction at 301 nm is due to Trp 108 only, which interacts with the catalytic carboxyls, Glu 35 and Asp 52. The macroscopic pK values of Glu 35 and Asp 52 in both lysozymes thus determined were 6.0 and 3.3, respectively. These values were in excellent agreement with those determined by measuring the pH dependence of the circular dichroic band at 305 nm (Kuramitsu et al. (1974) J. Biochem, 76, 671-683; (1975) ibid. 77, 291-301). The pH dependence of delta eplision at 295 nm could not be completely explained in terms of the electrostatic effects of the catalytic groups on Trp 108.  相似文献   

13.
The amino acid sequence of satyr tragopan lysozyme and its activity was analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had three amino acid substitutions at positions 103 (Asn to Ser), 106 (Ser to Asn), and 121 (His to Gln) comparing with Temminck's tragopan lysozyme and five amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), 101 (Asp to Gly) and 103 (Asn to Ser) with chicken lysozyme. The time course analysis using N-acetylglucosamine pentamer as a substrate showed a decrease of binding free energy change, 1.1 kcal/mol at subsite A and 0.2 kcal/mol at subsite B, between satyr tragopan and chicken lysozymes. This was assumed to be responsible for the amino acid substitutions at subsite A-B at position 101 (Asp to Gly), however another substitution at position 103 (Asn to Ser) considered not to affect the change of the substrate binding affinity by the observation of identical time course of satyr tragopan lysozyme with turkey and Temminck's tragopan lysozymes that carried the identical amino acids with chicken lysozyme at this position. These results indicate that the observed decrease of binding free energy change at subsites A-B of satyr tragopan lysozyme was responsible for the amino acid substitution at position 101 (Asp to Gly).  相似文献   

14.
Rhea lysozyme was analyzed for its enzymatic properties both lytic and oligomer activities to reveal the structural and functional relationships of goose type lysozyme. Rhea lysozyme had the highest lytic activity at pH 6, followed by ostrich and goose at pH 5.5-6, whereas the optimum of cassowary was at pH 5. pH profile was correlated to the net charge of each molecule surface. On the other hand, the pH optimum for oligomer substrate was found to be pH 4, indicating the mechanism of rhea catalysis as a general acid. The time-course of the reaction was studied using beta-1,4-linked oligosaccharide of N-acetylglucosamine (GlcNAc) with a polymerization degree of n ((GlcNAc)n) (n=4, 5, and 6) as the substrate. This enzyme hydrolyzed (GlcNAc)6 in an endo-splitting manner, which produced (GlcNAc)3+(GlcNAc)3 predominating over that to (GlcNAc)2+ (GlcNAc)4. This indicates that the lysozyme hydrolyzed preferentially the third glycosidic linkage from the nonreducing end. Theoretical analysis has shown the highest rate constant value at 1.5 s-1 with (GlcNAc)6. This confirmed six substrate binding subsites as goose lysozyme (Honda, Y., and Fukamizo, T., Biochim. Biophys. Acta, 1388, 53-65 (1998)). The different binding free energy values for subsites B, C, F, and G from goose lysozyme might responsible for the amino acid substitutions, Asn122Ser and Phe123Met, located at the subsite B.  相似文献   

15.
The role of binding subsite A, located at the terminal of the six binding subsites of hen egg-white lysozyme, in substrate binding and catalytic reactions was investigated by kinetic studies using a chemical modification method. Computer simulation showed that, although subsite A participates in the binding of the substrate, a decrease in the affinity of subsite A to the sugar residue does not cause a lowering of the rate of substrate consumption but changes the mode of the reaction by changing the distribution of the products formed. The binding free energies of subsites for Asp-101-modified lysozymes were estimated by data-fitting from the experimental time-courses. The contribution of Asp-101 in hen egg-white lysozyme to the substrate binding at subsite A was estimated to correspond to a binding free energy of about -3 kJ/mol, 30% of the total binding free energy of subsite A. Modification of Asp-101 affected not only the binding free energy of subsite A but also that of subsite C.  相似文献   

16.
The environments of the binding subsites in Asp 101-modified lysozyme, in which glucosamine or ethanolamine is covalently bound to the carboxyl group of Asp 101, were investigated by chemical modification and nuclear magnetic resonance spectroscopy. Trp 62 in each of the native and the modified lysozymes was nitrophenylsulfenylated. The yield of the nitrophenylsulfenylated derivative from the lysozyme modified with glucosamine at Asp 101 (GlcN-lysozyme) was considerably lower than those from native lysozyme and from the lysozyme modified with ethanolamine at Asp 101 (EtN-lysozyme). These results suggest that Trp 62 in GlcN-lysozyme is less susceptible to nitrophenylsulfenylation. Kinetic analyses of the [Trp 62 and Asp 101]-doubly modified lysozymes indicated that the nitrophenylsulfenylation of Trp 62 in the native lysozyme, EtN-lysozyme, or GlcN-lysozyme decreased the sugar residue affinity at subsite C while increasing the binding free energy change by 2.7 kcal/mol, 1.5 kcal/mol, or 0.1 kcal/mol, respectively. Although the profile of tryptophan indole NH resonances in the 1H-NMR spectrum for EtN-lysozyme was not different from that for the native lysozyme, the indole NH resonance of Trp 62 in GlcN-lysozyme was apparently perturbed in comparison with that of native lysozyme. These results suggest that the environment of subsite C in GlcN-lysozyme is considerably different from those in native lysozyme and EtN-lysozyme. The glucosamine residue attached to Asp 101 may contact the sugar residue binding site of the lysozyme, affecting the environment of subsite C.  相似文献   

17.
The pH dependence of the kinetic parameters of pepsin, rhizopuspepsin, and their active-site hydrogen bond mutants has been determined. These data have permitted the calculation of two active-site ionization constants in the free enzymes (pKe1 and pK32) and in the enzyme-substrate complexes (pKes1 and pKes2). The pKe1 of rhizopuspepsin (2.8) is near that of a normal carboxyl group and near the pKe1 of human immunodeficiency virus type 1 (HIV-1) protease (3.32) (Ido, E., Han, H. P., Kezdy, F. J., and Tang, J. (1991) J. Biol. Chem. 266, 24359-24366). The pKe1 of pepsin (1.57) is thus abnormally low. The pKe2 of rhizopuspepsin (4.44) is lower than that of pepsin (5.02) and HIV protease (6.80). The binding of substrate to rhizopuspepsin causes the lowering of pKes1 to 1.8 and the elevating of pKes2 to above 6. The pK alpha shifts due to substrate binding are much less pronounced in pepsin. Thus, the two enzyme-substrate complexes have similar pK alpha values. For both pepsin and rhizopuspepsin, the removal of hydrogen bonds to the active-site carboxyls by mutagenesis results in negligible changes in the four pK alpha values. The major alteration caused by these mutations is the decrease in kcat values, while there is little change in Km. These observations suggest that these hydrogen bonds to the active-site aspartyls contribute little to the pH-activity relationships of the aspartic proteases. The role of the active-site hydrogen bonds may well be to preserve the conformational rigidity of the catalytic apparatus.  相似文献   

18.
Legler PM  Massiah MA  Mildvan AS 《Biochemistry》2002,41(35):10834-10848
GDP-mannose mannosyl hydrolase (GDPMH) is an unusual Nudix family member, which catalyzes the hydrolysis of GDP-alpha-D-mannose to GDP and the beta-sugar by nucleophilic substitution at carbon rather than at phosphorus (Legler, P. M., Massiah, M. A., Bessman, M. J., and Mildvan, A. S. (2000) Biochemistry 39, 8603-8608). Using the structure and mechanism of MutT, the prototypical Nudix enzyme as a guide, we detected six catalytic residues of GDPMH, three of which were unique to GDPMH, by the kinetic and structural effects of site-specific mutations. Glu-70 (corresponding to Glu-57 in MutT) provides a ligand to the essential divalent cation on the basis of the effects of the E70Q mutation which decreased kcat 10(2.2)-fold, increased the dissociation constant of Mn2+ from the ternary E-Mn2+-GDP complex 3-fold, increased the K(m)Mg2+ 20-fold, and decreased the paramagnetic effect of Mn2+ on 1/T1 of water protons, indicating a change in the coordination sphere of Mn2+. In the E70Q mutant, Gln-70 was shown to be very near the active site metal ion by large paramagnetic effects of Mn2+ on its side chain -NH2 group. With wild-type GDPMH, the effect of pH on log(kcat/K(m)GDPmann) at 37 degrees C showed an ascending limb of unit slope, followed by a plateau yielding a pK(a) of 6.4, which increased to 6.7 +/- 0.1 in the pH dependence of log(kcat). The general base catalyst was identified as a neutral His residue by the DeltaH(ionization) = 7.0 +/- 0.7 kcal/mol, by the increase in pK(a) with ionic strength, and by mutation of each of the four histidine residues of GDPMH to Gln. Only the H124Q mutant showed the loss of the ascending limb in the pH versus log(kcat) rate profile, which was replaced by a weak dependence of rate on hydroxide concentration, as well as an overall 10(3.4)-fold decrease in kcat, indicating His-124 to be the general base, unlike MutT, which uses Glu-53 in this role. The H88Q mutant showed a 10(2.3)-fold decrease in kcat, a 4.4-fold increase in K(m)GDPmann, and no change in the pH versus log(kcat) rate profile, indicating an important but unidentified role of His-88 in catalysis. One and two-dimensional NMR studies permitted the sequence specific assignments of the imidazole HdeltaC, H(epsilon)C, N(delta), and N(epsilon) resonances of the four histidines and defined their protonation states. The pK(a) of His-124 (6.94 +/- 0.04) in the presence of saturating Mg2+ was comparable to the kinetically determined pK(a) at the same temperature (6.40 +/- 0.20). The other three histidines were neutral N(epsilon)H tautomers with pK(a) values below 5.5. Arg-52 and Arg-65 were identified as catalytic residues which interact electrostatically with the GDP leaving group by mutating these residues to Gln and Lys. The R52Q mutant decreased kcat 309-fold and increased K(m)GDPmann 40.6-fold, while the R52K mutant decreased kcat by only 12-fold and increased K(m)GDPmann 81-fold. The partial rescue of kcat, but not of K(m)GDPmann in the R52K mutant, suggests that Arg-52 is a bifunctional hydrogen bond donor to the GDP leaving group in the ground state and a monofunctional hydrogen bond donor in the transition state. Opposite behavior was found with the Arg-65 mutants, suggesting this residue to be a monofunctional hydrogen bond donor to the GDP leaving group in the ground state and a bifunctional hydrogen bond donor in the transition state. From these observations, a mechanism for GDPMH is proposed involving general base catalysis and electrostatic stabilization of the leaving group.  相似文献   

19.
Heats of dilution and of saccharide binding for hen egg white lysozyme have been measured at 30 degrees, 0.1 ionic strength, and pH 7 over the range 3 to 95 mg of protein/ml. The concentration dependence of the apparent relative molar enthalpy of lysozyme derived from these results gives the thermodynamic parameters for the formation of an intermolecular contact in an indefinite (head-to-tail) self-association process as delta G 0 = -3.9 kcal/mol, delta H 0 = -6.4 kcal/mol, and delta S 0 = -8,3 e.u. Oxindolealanine-62-lysozyme does not undergo self-association reactions that can be detected calorimetrically. This derivative reacts with native lysozyme to form hybrid polymeric species with free energy and enthalpy of interaction similar to those for the polymers of native lysozyme. These results are consistent with the intermolecular contact in the self-assocaition of lysozyme being asymmetric (head-to-tail). The heat of dilution of the derivative of lysozyme in which Glu-35 is blocked as the ester with oxindolealanine-108 is like that observed for native lysozyme in acid solution and is independent of pH. The concentration difference spectrum that develops through self-association is of the shape expected for introduction of an indole chromophore into a charge-free region of the intermolecular contact. The foregoing results indicate that Glu-35 and Trp-62 are part of the contact, that perturbation of Trp-108 does not make a principle contribution to the concentration difference spectrum, and that no acid group other than Glu-35 is perturbed by self-association. There is a small change in the heat of (GlcNAc)3 binding over the range 0.005 to 0.034 M saccharide. These data give the value of -1 kcal/mol for the enthalpy change for formation of the 2:1 saccharide-enzyme complex (ES2) from ES and S.  相似文献   

20.
The amidase activity of human gamma-thrombin has been studied in the pH range 6-10 as a function of NaCl concentration and temperature. As recently found for human alpha-thrombin [Di Cera, E., De Cristofaro, R., Albright, D.J., & Fenton, J.W., II (1991) Biochemistry 30, 7913-7924], the Michaelis-Menten constant, Km, shows a bell-shaped dependence over this pH range with a minimum around pH 7.9 in the presence of 0.1 M NaCl at 25 degrees C. The catalytic constant, kcat, has a bell-shaped pH dependence with a maximum around pH 8.6. A thermodynamic analysis of these parameters has enabled a characterization of the linkage between proton and substrate binding, its dependence on NaCl concentration, and the relevant entropic and enthalpic contributions to binding and catalytic events. Three groups seem to be responsible for the control of gamma-thrombin amidase activity as a function of pH. One of these groups has pK values that are significantly different from those found for alpha-thrombin, and all groups show slightly perturbed enthalpies of ionization. The dependence of gamma-thrombin amidase activity on NaCl concentration is different from that of alpha-thrombin. Increasing NaCl concentration always decreases the substrate affinity for the enzyme in the case of alpha-thrombin, regardless of pH. In the case of gamma-thrombin, such an effect is observed only in the pH range 7.5-9, and a reversed linkage is observed at pH less than 7 and greater than 9.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号