首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
CD34 antigen is a novel marker for human hematopoietic stem/progenitor cells. In the present study, two cell fractions, CD34low and CD34high, were prepared from steady-state human peripheral blood on the basis of CD34 antigen expression. The colony-forming unit megakaryocytes (CFU-Meg) contained in each cell fraction were compared for X-radiation sensitivity and cytokine action. The content of CD34+CD45+ cells in the CD34low and CD34high cell fractions was 74.8% and 88.8%, respectively, and the frequency of thrombopoietin (TPO)-supported CFU-Meg in the CD34low cell fraction was 1.9 times higher than that in CD34high. The CFU-Meg in CD34high were more radiosensitive than those in CD34low, indicating that steady-state human peripheral blood contains different types of CFU-Meg. However, no significant differences were observed between cell fractions in the radiation survival curves of CFU-Meg stimulated by TPO plus cytokines except granulocyte colony-stimulating factor (G-CSF). TPO plus interleukin 3 was the optimal combination for survival of both types of CFU-Meg after X irradiation. The present study also demonstrated that TPO plus G-CSF is able to increase the survival of irradiated CD34low CFU-Meg. These results suggest that two megakaryocytic progenitor populations with different radiosensitivity and cytokine responses are found in steady-state human peripheral blood.  相似文献   

2.
The murine embryonal stem (ES) cell virus (MESV) can express transgenes from the long terminal repeat (LTR) promoter/enhancer in undifferentiated ES cells, but expression is turned off upon differentiation to embryoid bodies (EBs) and hematopoietic cells in vitro. We examined whether a human immunodeficiency virus type 1-based lentivirus vector pseudotyped with the vesicular stomatitis virus G protein (VSV-G) could transduce ES cells efficiently and express the green fluorescent protein (GFP) transgene from an internal phosphoglycerate kinase (PGK) promoter throughout development to hematopoietic cells in vitro. An oncoretrovirus vector containing the MESV LTR and the GFP gene was used for comparison. Fluorescence-activated cell sorting analysis of transduced CCE ES cells showed 99.8 and 86.7% GPF-expressing ES cells in the VSV-G-pseudotyped lentivirus (multiplicity of infection [MOI] = 59)- and oncoretrovirus (MOI = 590)-transduced cells, respectively. Therefore, VSV-G pseudotyping of lentiviral and oncoretrovirus vectors leads to efficient transduction of ES cells. Lentivirus vector integration was verified in the ES cell colonies by Southern blot analysis. When the transduced ES cells were differentiated in vitro, expression from the oncoretrovirus LTR was severely reduced or extinct in day 6 EBs and ES cell-derived hematopoietic colonies. In contrast, many lentivirus-transduced colonies, expressing the GFP gene in the undifferentiated state, continued to express the transgene throughout in vitro development to EBs at day 6, and many continued to express in cells derived from hematopoietic colonies. This experimental system can be used to analyze lentivirus vector design for optimal expression in hematopoietic cells and for gain-of-function experiments during ES cell development in vitro.  相似文献   

3.
Human embryonic stem (hES) cells are able to give rise to a variety of cell lineages under specific culture condition. An effective strategy for stable genetic modification in hES cells may provide a powerful tool for study of human embryogenesis and cell-based therapies. However, gene silences are documented in hES cells. In current study, we investigated whether genes controlled under ubiquitin promoter are expressed during hematopoietic-endothelial differentiation in hES cells. Undifferentiated hES cells (H1) were transduced by lentivirus encoding green fluorescent protein (GFP) gene under ubiquitin promoter. GFP-expressing hES cells (GFP-H1) were established after several rounds of mechanical selection under fluorescence microscope. GFP gene was stably expressed in hES cells throughout prolonged (> 50 passages) cultivation, and in differentiated embryo body (EB) and teratoma. Hematopoietic and endothelial markers, including KDR (VEGFR2), CD34, CD31, Tie-2, GATA-1 and GATA-2, were expressed at similar levels during hES cell differentiation in parent hES cells and GFP-H1 hES cells. CD34+ cells isolated from GFP-H1 hES cells were capable to generate hematopoietic colony-forming cells and tubular structure-forming cells. Differentiated GFP-EB formed vasculature structures in a semi-solid sprouting EB model. These results indicated that a transgene under ubiquitin promoter in lentiviral transduced hES cells retained its expression in undifferentiated hES cells and in hES-derived hematopoietic and endothelial cells. With the view of embryonic mesodermal developing events in humans, genetic modification of hES cells by lentiviral vectors provides a powerful tool for study of hematopoiesis and vasculogenesis.  相似文献   

4.
Efficient infection with adenovirus (Ad) vectors based on serotype 5 (Ad5) requires the presence of coxsackievirus-adenovirus receptors (CAR) and alpha(v) integrins on cells. The paucity of these cellular receptors is thought to be a limiting factor for Ad gene transfer into hematopoietic stem cells. In a systematic approach, we screened different Ad serotypes for interaction with noncycling human CD34(+) cells and K562 cells on the level of virus attachment, internalization, and replication. From these studies, serotype 35 emerged as the variant with the highest tropism for CD34(+) cells. A chimeric vector (Ad5GFP/F35) was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid. This substitution was sufficient to transplant all infection properties from Ad35 to the chimeric vector. The retargeted, chimeric vector attached to a receptor different from CAR and entered cells by an alpha(v) integrin-independent pathway. In transduction studies, Ad5GFP/F35 expressed green fluorescent protein (GFP) in 54% of CD34(+) cells. In comparison, the standard Ad5GFP vector conferred GFP expression to only 25% of CD34(+) cells. Importantly, Ad5GFP transduction, but not Ad5GFP/F35, was restricted to a specific subset of CD34(+) cells expressing alpha(v) integrins. The actual transduction efficiency was even higher than 50% because Ad5GFP/F35 viral genomes were found in GFP-negative CD34(+) cell fractions, indicating that the cytomegalovirus promoter used for transgene expression was not active in all transduced cells. The chimeric vector allowed for gene transfer into a broader spectrum of CD34(+) cells, including subsets with potential stem cell capacity. Fifty-five percent of CD34(+) c-Kit(+) cells expressed GFP after infection with Ad5GFP/F35, whereas only 13% of CD34(+) c-Kit(+) cells were GFP positive after infection with Ad5GFP. These findings represent the basis for studies aimed toward stable gene transfer into hematopoietic stem cells.  相似文献   

5.
6.
7.
8.
To explore the physiological significance of AC133 expression on human haematopoietic cells, we phenotyped normal and malignant human haematopoietic cells for AC133 expression, evaluated the utility of AC133 for isolating human stem/progenitor cells in comparison to other known early haematopoietic cell markers, investigated the role of AC133 in regulating hematopoiesis, and evaluated the possibility that MYB might regulate AC133. We found that while human CD34+ progenitor cells expressed AC133, expression was rapidly downregulated during differentiation. In apparent contrast, AC133 mRNA was detectable in cells isolated from CFU-Mix, BFU-E, CFU-GM and CFU-Meg colonies. Human cord blood CD34+ cells expressed AC133 at higher levels than their normal bone marrow counterparts. In apparent contrast to normal primitive haematopoietic cells, the AC133 protein was undetectable on cells from 24 different human haematopoietic cells lines, even though the majority of these cells expressed AC133 mRNA. Since CD34, AC133 and the c-kit (KIT) receptor are all co-expressed on human stem/progenitor cells, we compared the ability of monoclonal antibodies directed against each of these proteins to isolate early progenitor cells. Using these antibodies and magnetized particles in a standard immunoaffinity isolation protocol, we found that anti-CD34 and anti-KIT MoAbs could isolate > 80-90% of the clonogeneic cell population present in a given marrow sample. Anti-AC133 MoAbs recovered approximately 75-80% of CFU-GM and CFU-Meg, but only about 30% of CFU-Mix and BFU-E. Perturbation of AC133 expression with antisense oligodeoxynucleotides (AS ODN) resulted in transient downregulation of AC133 protein on human CD34+ cells but no apparent effect on cell survival or cloning efficiency ex vivo. Finally, downregulation of MYB expression with AS ODN had no effect on the AC133 expression at either the mRNA or protein level. Based on these results, we conclude that AC133 offers no distinct advantage over CD34 or c-kit as a target for immunoaffinity based isolation of primitive hematopoietic cells, that AC133 expression is not required for normal hematopoietic progenitor cell development in vitro, and finally that AC133 expression may not be MYB-dependent.  相似文献   

9.
To study the control of hematopoietic cell differentiation, a human negative differentiation regulator (NDR) gene was identified by the comparative analysis of differentially expressed genes in hemato-lymphoid tissues.NDR is expressed preferentially in the adult bone marrow, fetal liver and testis. Immunocytochemistry with anti-NDR antiserum showed the presence of NDR in human erythroleukemia K562 cell line and CD34+ cells sorted from the umbilical cord blood. When fused to the green fluorescent protein (GFP), NDR was directed to the nucleus of mouse 3T3 and K562 cells. Fusion protein with a deletion from residues 7 to 87 was detected in the cytoplasm. NDR appeared not to affect the proliferation of K562 cells when overly expressed. However, its expression was down-regulated during megakaryocytic differentiation of K562 cells induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Down-regulation of NDR correlated well with up-regulation of megakaryocytic markers, CD41 and CD61. Overexpression of the nuclear NDR-GFP in K562 cells inhibited the expression of CD41 and CD61 in megakaryocytic differentiation. Treatment of K562 cells with GF-109203X (GFX), an antagonist of the protein kinase C (PKC), blocked NDR down-regulation, up-regulated expression of CD41/CD61 and TPA-induced megakaryocytic differentiation. These results suggest a novel function of nuclear NDR protein in regulating hematopoietic cell development.  相似文献   

10.
Retroviral-mediated gene transfer into mammalian cells   总被引:2,自引:0,他引:2  
Retroviruses may be used as genetic vectors to transfer genes into mammalian cells with high efficiency. We have shown that the N2 vector will transfer a functional bacterial gene for neomycin resistance (NeoR) into more than 80% of mouse spleen foci. A derivative of the N2 vector was constructed to study transfer and expression of the human gene for adenosine deaminase (ADA) in mammalian lymphoid and hematopoietic stem cells. This vector, termed SAX, contains the human ADA cDNA with an SV40 promoter in addition to the NeoR gene. The SAX vector was found to efficiently transfer and express the ADA gene in an ADA-deficient human T-cell line. Gene transfer by SAX using an autologous nonhuman primate bone marrow transplant model resulted in expression of the human ADA gene in peripheral blood cells of treated animals. Human bone marrow treated with SAX produced 1%-2% of colonies in vitro that were expressing the vector genes. Transfer of genes into circulating hematopoietic stem cells of fetal sheep in utero was most efficient; vector gene expression was evident in 20%-40% of hematopoietic colonies. Therefore, retroviral vectors are capable of transferring functional genes into a wide variety of mammalian lymphoid and hematopoietic cells. Such vectors may be useful for clinical trials of gene therapy, that is, the correction of genetic diseases by insertion of a normal gene into a patient's defective cells.  相似文献   

11.
12.
13.
14.
15.
Megakaryopoiesis is associated with inflammatory reactions. To investigate the role of interferon regulatory factors (IRFs) in inflammation-associated megakaryopoiesis, mouse bone marrow hematopoietic stem cells (HSCs) were analyzed. IFN-γ treatment induced IRF-2 expression as well as the expression of CD41 and IRF-1 in HSCs. An in vitro clonogenic assay showed that IRF-2- but not IRF-1-overexpressing cells increased the number of megakaryocytic colonies. IRF-2 transfection up-regulated CD41 promoter activity in hematopoietic cell lines. The number of CD41-positive bone marrow cells increased in mice injected with IRF-2-expressing bone marrow cells. These findings suggest that IRF-2 plays an important role in megakaryopoiesis in inflammatory states.  相似文献   

16.
To ensure the B cell differentiation stage specificity of the intronic Emu element and of the locus control region (LCR) that lies downstream of the IgH chain locus, we generated transgenic mice harboring a V(H) promoter-GFP reporter gene linked to the 3'LCR region and the Emu element. By flow cytometry, GFP(+) lymphocytes were observed amongst pro-B cells (B220(+)CD43(+)CD117(+)) and at all stages of differentiation up to mature B cells (B220(+)IgM(+)IgD(+)). Expression was strictly confined to cells committed to the B lymphocyte lineage as judged by the lack of GFP(+)Thy1,2(+) cells (T lymphocytes) and GFP(+)B220(-)CD117(+)CD43(+) cells (uncommitted lymphohematopoietic progenitors). Therefore, the Emu-GFP-3'LCR transgene is not expressed by hematopoietic stem cells, begins its expression in pro-B cells and is specifically active at all stages of B cell maturation. The combination of 3' and 5' IgH regulatory elements thus appears as a potentially useful cassette in transgenes that require a stringent and early B lineage-specific expression.  相似文献   

17.
The hematopoietic compartments act as long-term reservoirs for human immunodeficiency virus type-1 (HIV-1). Although hematopoietic progenitor cells (HPCs) are rarely infectable, HPCs committed to the megakaryocytic lineage can be infected and support a productive infection by both the X4 and R5 strains of HIV-1. Indeed, in contrast to the CD34+ progenitors, the lineage-committed HPCs express high levels of the HIV-1 co-receptors, CXCR4 and CCR5. The HIV-1 transactivator (Tat) protein has been shown to alter co-receptor expression in T lymphocytes and macrophages. We hypothesized that Tat may regulate co-receptor expression in lineage-specific HPCs as well. We have monitored the effects of Tat protein on co-receptor expression and on lineage-specific differentiation, using the HPC cell line, K562. Butyric acid (BA)-induced erythroid differentiation in K562 cells was suppressed by 1-100 ng/ml of Tat, as evident from a 70-80% decrease in hemoglobin (Hb) production and a 10-30-fold decrease in glycophorin-A expression. However, Tat treatment enhanced phorbol myristate acetate (PMA)-induced megakaryocytic differentiation, as evident from a 180-210% increase in 3H-serotonin uptake and a 5-12-fold increase in CD61 expression. Tat did not significantly alter co-receptor expression in erythroid cells. However, Tat co-treatment profoundly effected both CXCR4 and CCR5 gene expression and protein levels in megakaryocytic cells. In PMA-stimulated cells, Tat increased CXCR4 and decreased in CCR5 expression, this was potentiated in cells chronically exposed to Tat. In conclusion, Tat protein suppresses erythroid and facilitates megakaryocytic differentiation of K562 cells. In megakaryocytic cells, Tat differentially effected CXCR4 and CCR5 expression. Because megakaryocytes may play a crucial role in HIV-1 infectivity in viral reservoirs, our findings implicate a role for Tat protein in dictating co-receptor usage in lineage-committed HPCs.  相似文献   

18.
19.
20.
Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin(-) c-kit(+) Sca1(+) primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% +/- 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42. 0% +/- 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 (53.3 +/- 1.8%) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction (39.3 +/- 9.4%). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP(+) lentivirus vector-transduced colonies revealed vector PCR(+) GFP(+) (42%), vector PCR(-) GFP(-) (46%), and vector PCR(+) GFP(-) (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior to vector integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号