首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rat corneal epithelium has been chosen as a model for studying growth regulation. In this epithelium a large single cohort of cells enters the S phase during a fairly short time period once a day. The factor responsible for this wave of cell proliferation is unknown, but it may be a chemical signal from the central nervous system (the suprachiasmatic nucleus or the corpus pineale). The mature cell compartment of the corneal epithelium is assumed to produce a negative feedback factor (chalone), counteracting the effect of the circadian proliferative factor on the local cell proliferation. When no circadian factor is being produced, during most of the 24 h, the chalone seems to enhance the maturation process. During diminished chalone production (e.g. after cell injury and subsequent regeneration), we will get a more or less unrestricted cell proliferation in the tissue with a delayed maturation process prolonging the chalone depletion. This interaction between the circadian proliferative factor and the negative feedback factor for regulation of proliferation with its accompanying stimulatory effect on maturation, may represent a general mechanism in the regulation of cell proliferation in any tissue. Since in at least some organs virtually all cells entering the S phase do this as a single wave once a day, this mechanism may be enough to explain the regulation of cell proliferation during both normal and regenerative conditions.  相似文献   

3.
Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.  相似文献   

4.
Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation.  相似文献   

5.
Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.  相似文献   

6.
7.
It is nowadays well established that gap junctions are critical gatekeepers of cell proliferation, by controlling the intercellular exchange of essential growth regulators. In recent years, however, it has become clear that the picture is not as simple as originally anticipated, as structural precursors of gap junctions can affect cell cycling by performing actions not related to gap junctional intercellular communication. Indeed, connexin hemichannels also foresee a pathway for cell growth communication, albeit between the intracellular compartment and the extracellular environment, while connexin proteins as such can directly or indirectly influence the production of cell cycle regulators independently of their channel activities. Furthermore, a novel set of connexin-like proteins, the pannexins, have lately joined in as regulators of the cell proliferation process, which they can affect as either single units or as channel entities. In the current paper, these multifaceted aspects of connexin-related signalling in cell cycling are reviewed.  相似文献   

8.
Gallbladder carcinoma (GBC) is one of the mostly aggressive and fatal malignancies. However, little is known about the oncogenic genes that contributed to the development of GBC. Zinc finger X-chromosomal protein (ZFX) was a novel member of the Krueppel C2H2-type zinc-finger protein family and its down-regulation led to impaired cell growth in human laryngeal squamous cell carcinoma. Here, we aim to investigate the function of ZFX in GBC cell proliferation and migration. Loss of function analysis was performed on GBC cell line (GBC-SD) using lentivirus-mediated siRNA against ZFX. The proliferation, in vitro tumorigenesis (colony-formation) ability as well as cell migration was significantly suppressed after GBC-SD cells which were infected with ZFX-siRNA-expressing lentivirus (Lv-shZFX). Our finding suggested that ZFX promoted the growth and migration of GBC cells and could present a potential molecular target for gene therapy of GBC.  相似文献   

9.
DISP3 (PTCHD2), a sterol-sensing domain-containing protein, is highly expressed in neural tissue but its role in neural differentiation is unknown. In the present study we used a multipotent cerebellar progenitor cell line, C17.2, to investigate the impact of DISP3 on the proliferation and differentiation of neural precursors. We found that ectopically expressed DISP3 promotes cell proliferation and alters expression of genes that are involved in tumorigenesis. Finally, the differentiation profile of DISP3-expressing cells was altered, as evidenced by delayed expression of neural specific markers and a reduced capacity to undergo neural differentiation.  相似文献   

10.
钙调素作为真核细胞的重要信号蛋白,在真核生物正常及逆境条件下的生长发育中发挥着重要作用.研究报道钙调素可促进离体培养的高等动植物细胞的增殖,但有关钙调素蛋白在植物体内的细胞增殖功能尚未见报道.特别是拟南芥基因组中存在7个编码经典钙调素亚型的基因,多数编码基因的功能有待进一步探究.首先借助常用的钙调素拮抗剂W7进行药理学实验,结果表明,野生型拟南芥幼苗根的生长受到了明显的抑制,根尖分生区的面积变小、细胞数目明显减少,根尖分生区中细胞分裂标记基因CYCB1;1的表达受到了明显抑制,这表明在根尖分生区W7可能通过对活性钙调素的抑制作用影响了根尖分生区域的细胞增殖,而根尖分生区正常的细胞增殖需要一定量活性钙调素蛋白的存在.脱落酸(ABA)是植物逆境下的重要激素,在植物种子萌发及幼苗生长发育中发挥着重要作用,W7存在下的拟南芥幼苗对ABA的敏感性下降.借助反向遗传学手段获得了拟南芥中三个编码典型钙调素蛋白基因的三重缺失突变体cam234,蛋白质印迹结果表明三重缺失突变体中钙调素蛋白的含量明显降低.相同培养条件下与野生型相比,三重突变体幼苗根长变短,并且幼苗对ABA敏感性也表现下降趋势,暗示着这三个基因编码的钙调素蛋白可能参与了根分生区域细胞增殖过程及幼苗对脱落酸的敏感性反应,讨论了钙调素的细胞增殖功能及与幼苗对脱落酸的敏感性反应间的关系.  相似文献   

11.
12.
Hepatic stellate cells (HSCs) activation is an initial event in liver fibrosis. MicroRNAs (miRNAs) have been found to play essential roles in cell differentiation, proliferation, and fat metabolism. In this study, we showed that down-regulation of two over-expressed miRNAs, miR-27a and 27b allowed culture-activated rat HSCs to switch to a more quiescent HSC phenotype, with restored cytoplasmic lipid droplets and decreased cell proliferation. Mechanistically, retinoid X receptor α was confirmed to be the target of miR-27a and 27b. These results indicated a new role and mechanism of miR-27a and 27b in regulating fat metabolism and cell proliferation during HSCs activation.  相似文献   

13.
Naringin is considered the main effective compound of Drynaria Rhizome, which is used commonly in the treatment of osteoporosis in traditional Chinese medicine. However, we found neoeriocitrin, a new compound isolated from Drynaria Rhizome, showed a better activity than naringin on proliferation and osteogenic differentiation in MC3T3-E1. Both neoeriocitrin and naringin exhibited the best effect on proliferation and osteogenic differentiation at concentration of 2 μg/ml. Neoeriocitrin more significantly improved proliferation and alkaline phosphatase (ALP) activity as well as up-regulated Runx2, COLI and OCN expression by 56%, 37% and 14% respectively than naringin. Furthermore, neoeriocitrin could rescue the inhibition effect of cell differentiation induced by PD98059 to some degree. Therefore, neoeriocitrin may be a new promising candidate drug for treatment of osteoporosis.  相似文献   

14.
15.
The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1+ CD45 cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1+ cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture or as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1+ cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.  相似文献   

16.
In the past years, free fatty acids (FFAs) and obesity have been reported to play an important role in cancer development. Palmitic acid (PA) is the most prevalent saturated FFA in circulation. However, the mechanism underlying the effect of PA on cell proliferation is still to be elucidated. In this report, we, for the first time, investigate the signaling pathway in human normal hepatocytes (QZG) responsible for PA-induced proliferation. The results demonstrate that PA promotes cell cycle progression, accelerates cell proliferation, and induces a transient and sequential activation of a series of kinases. The employment of several inhibitors and antioxidants indicates that a ROS-induced stress-sensitive p38 MAPK/ERK-Akt cascade plays a critical role in the regulation of PA on cell cycle and cell proliferation. Moreover, PA dose and time dependently activates Nrf2 and this activation relies on ROS-induced stimulation of p38 MAPK/ERK-Akt signaling, demonstrating that Nrf2 activation may be associated with the regulation of PA on cell cycle transition and proliferation. In conclusion, our study elucidates the importance of PA metabolism on cell proliferation, and suggests that PA stimulates hepatocyte proliferation through activating the ROS-p38 MAPK/ERK-Akt cascade which is intersected with the activation of Nrf2 and that the effect of ROS on signal transduction is in a dose- and time-dependent manner. All the above noted provide a new clue for the central role of ROS in cell proliferation and tumorigenesis.  相似文献   

17.
黑色素细胞中产生的黑色素转移及黑色素细胞的增殖和迁移均与色素沉积有关。黑色素细胞的增殖需要有丝分裂原协同进行。黑色素细胞的增殖和分化受组织环境以及多种毛色基因的调控。miRNA-411a-3p在不同毛色羊驼皮肤中呈差异表达,且通过靶向IGF1R调控黑色素生成。但miRNA-411a-3p是否与黑色素颗粒迁移、黑色素细胞的增殖和迁移相关未见报道。本研究通过miRNA-411a-3p转染羊驼黑色素细胞后发现,与对照组相比,钙离子信号转导水平下降了(91.73±1.53)% (P<0.01),与黑色素转移有关的Rab27a和肌球蛋白Va在蛋白质水平的表达均被下调,同时与细胞增殖有关的整联蛋白β1和β5相关基因在转录水平分别下降了(44.67 ± 13.67)%(P<0.01)和(30.72 ± 6.23)% (P<0.01),在蛋白质水平表达下降了(45.18 ± 1.96)% (P<0.001)和(11.52 ± 1.09)% (P<0.001)。综上所述,miRNA-411a-3p过表达后会抑制钙离子信号转导,以及羊驼黑色素细胞的增殖和迁移。  相似文献   

18.
Epidemiological evidence suggests that moderate wine consumption and antioxidant-rich diets may protect against age-related macular degeneration (AMD), the leading cause of vision loss among the elderly. Development of AMD and other retinal diseases, such as proliferative vitreoretinopathy (PVR), is associated with oxidative stress in the retinal pigment epithelium (RPE), a cell layer responsible for maintaining the health of the retina by providing structural and nutritional support. We hypothesize that resveratrol, a red wine polyphenol, may be responsible, in part, for the health benefits of moderate red wine consumption on retinal disease. To test this hypothesis, the antioxidant and antiproliferative effects of resveratrol were examined in a human RPE cell line (designated ARPE-19). Cell proliferation was determined using the bromodeoxyuridine (BrdU) assay, intracellular oxidation was assessed by dichlorofluorescein fluorescence, and activation of the mitogen-activated protein kinase (MAPK) cascade was measured by immunoblotting. Treatment with 50 and 100 micromol/L resveratrol significantly reduced proliferation of RPE cells by 10% and 25%, respectively (P<0.05). This reduction in proliferation was not associated with resveratrol-induced cytotoxicity. Resveratrol (100 micromol/L) inhibited basal and H2O2-induced intracellular oxidation and protected RPE cells from H2O2-induced cell death. The observed reduction in cell proliferation was associated with inhibition of mitogen activated protein kinase/ERK (MEK) and extracellular signal-regulated kinase (ERK 1/2) activities at concentrations of resveratrol as low as 5 micromol/L. These results suggest that resveratrol can reduce oxidative stress and hyperproliferation of the RPE.  相似文献   

19.
黑色素细胞中产生的黑色素转移及黑色素细胞的增殖和迁移均与色素沉积有关。黑色素细胞的增殖需要有丝分裂原协同进行。黑色素细胞的增殖和分化受组织环境以及多种毛色基因的调控。miRNA-411a-3p在不同毛色羊驼皮肤中呈差异表达,且通过靶向IGF1R调控黑色素生成。但miRNA-411a-3p是否与黑色素颗粒迁移、黑色素细胞的增殖和迁移相关未见报道。本研究通过miRNA-411a-3p转染羊驼黑色素细胞后发现,与对照组相比,钙离子信号转导水平下降了(91.73±1.53)% (P<0.01),与黑色素转移有关的Rab27a和肌球蛋白Va在蛋白质水平的表达均被下调,同时与细胞增殖有关的整联蛋白β1和β5相关基因在转录水平分别下降了(44.67 ± 13.67)%(P<0.01)和(30.72 ± 6.23)% (P<0.01),在蛋白质水平表达下降了(45.18 ± 1.96)% (P<0.001)和(11.52 ± 1.09)% (P<0.001)。综上所述,miRNA-411a-3p过表达后会抑制钙离子信号转导,以及羊驼黑色素细胞的增殖和迁移。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号