首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS− AGY and trnQ genes, a trnM isomerism, but it lacks trnS− CUN. We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP → trnS− AGY) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, “Oxidored_q1_N”, which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.  相似文献   

2.
The family Trigonalyidae is considered to be one of the most basal lineages in the suborder Apocrita of Hymenoptera. Here, we determine the first complete mitochondrial genome of the Trigonalyidae, from the species Taeniogonalos taihorina (Bischoff, 1914). This mitochondrial genome is 15,927 bp long, with a high A + T-content of 84.60%. It contains all of the 37 typical animal mitochondrial genes and an A + T-rich region. The orders and directions of all genes are different from those of previously reported hymenopteran mitochondrial genomes. Eight tRNA genes, three protein-coding genes and the A + T-rich region were rearranged, with the dominant gene rearrangement events being translocation and local inversion. The arrangements of three tRNA clusters, trnYtrnMtrnItrnQ, trnWtrnL2trnC, and trnHtrnAtrnRtrnNtrnStrnEtrnF, and the position of the cox1 gene, are novel to the Hymenoptera, even the insects. Six long intergenic spacers are present in the genome. The secondary structures of the RNA genes are normal, except for trnS2, in which the D-stem pairing is absent.  相似文献   

3.
X Wu  X Li  L Li  X Xu  J Xia  Z Yu 《Gene》2012,507(2):112-118
A feasible way to perform evolutionary analyses is to compare characters divergent enough to observe significant differences, but sufficiently similar to exclude saturation of the differences that occurred. Thus, comparisons of invertebrate mitochondrial (mt) genomes at low taxonomic levels can be extremely helpful in investigating patterns of variation and evolutionary dynamics of genomes, as intermediate stages of the process may be identified. Fortunately, in this study, we newly sequenced the mt genome of the eighth member of Asian Crassostrea oysters which can provide necessary intermediate characters for us to believe that the variation of Crassostrea mt genomes is considerably greater than previously acknowledged. Several new features of Asian Crassostrea oyster mitochondrial genomes were revealed, and our results are particularly significant as they 1) suggest a novel model of alloacceptor tRNA gene recruitment, namely "vertical" tRNA gene recruitment, which can be successfully used to explain the origination of the unusually additional trnK and trnQ genes (annotated as trnK(2) and trnQ(2) respectively) in the mt genomes of the five Asian oysters, and we speculate that this recruitment progress may be a common phenomenon in the evolution of the tRNA multigene family; 2) reveal the existence of two additional, lineage-specific, mtDNA-encoded genes that may originate from duplication of nad2 followed by rapid evolutionary change. Each of these two genes encodes a unique amino terminal signal peptide, thus each might possess an unknown function; and 3) identify for the first time the atp8 gene in oysters. The present study thus gives further credence to the comparison of congeneric bivalves as a meaningful strategy to investigate mt genomic evolutionary trends in genome organization, tRNA multigene family, and gene loss and/or duplication that are difficult to undertake at higher taxonomic levels. In particular, our study provides new evidence for the identification and characterization of ORFs in the "non-coding region" of animal mt genomes.  相似文献   

4.
Copepoda is the most diverse and abundant group of crustaceans, but its phylogenetic relationships are ambiguous. Mitochondrial (mt) genomes are useful for studying evolutionary history, but only six complete Copepoda mt genomes have been made available and these have extremely rearranged genome structures. This study determined the mt genome of Calanus hyperboreus, making it the first reported Arctic copepod mt genome and the first complete mt genome of a calanoid copepod. The mt genome of C. hyperboreus is 17,910 bp in length and it contains the entire set of 37 mt genes, including 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. It has a very unusual gene structure, including the longest control region reported for a crustacean, a large tRNA gene cluster, and reversed GC skews in 11 out of 13 protein-coding genes (84.6%). Despite the unusual features, comparing this genome to published copepod genomes revealed retained pan-crustacean features, as well as a conserved calanoid-specific pattern. Our data provide a foundation for exploring the calanoid pattern and the mechanisms of mt gene rearrangement in the evolutionary history of the copepod mt genome.  相似文献   

5.
The complete mitochondrial genome (mitogenome) of a female flightless geometrid moth Apocheima cinerarius was found to be 15,722 bp in length, containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a control region. The A + T content of the complete mitogenome is 80.83%. The AT skew value ([A − T] / [A + T]) is 0.027. The 13 PCGs of the mitogenome start with typical ATN codons, except for cox1 with the start codon CGA. All the tRNA genes have typical cloverleaf secondary structures, except for trnSer(AGN). The secondary structures of rrnL and rrnS were predicted. Six structural domains including conserved regions (IV, V) and variable regions (I, II, III, VI) were identified in the secondary structure of rrnL. The secondary structure of rrnS consists of 3 structural domains. The control region of A. cinerarius begins with conserved motifs of “ATAGA” + 19-bp poly T. It also contains a microsatellite-like (TA)26, a stem-and-loop structure, and a poly-A stretch. Phylogenetic analysis showed that Geometroidea is more closely related to Bombycoidea than to Noctuoidea. A. cinerarius is more closely related to Biston panterinaria than to Phthonandria atrilineata, which is in accordance with the conventional morphology-based classification.  相似文献   

6.
Wang X  Xu X 《Gene》2012,494(1):17-23
The extreme variability of the mitochondrial (mito) genomes of bivalves makes it difficult to understand their evolutionary dynamics, given that species from different families do not share comparable features. We compared the mitogenomes from four Paphia clams (three of them were firstly sequenced) and found that mitogenome reorganization among the four congeneric species is not random but follows phylogenetic trends. Start/stop codon variations are species-correlated rather than gene-correlated, and bear useful phylogenetic information. Unique start/stop codon usage in P. euglypta and A+T content in P. amabilis indicates that these mitogenome-level characters, usually considered to be conservative features in other lineages, may not be phylogenetically evolved, but may have evolved via species-specific mitogenomic maintenance mechanisms. Variable divergence of two trnM genes in different lineages may demonstrate differences in mechanisms by which paralogous trnM genes are maintained. Sequence alignment analysis indicates that the VNTRs in the four mitogenomes have a common origin. The rationale of the subgenus Neotapes Kuroda and Habe, 1971 was supported by evidence from morphological characters, mitogenomic features, as well as phylogenetic analyses using cox1 and rrnS genes. The data suggest that the taxonomic basis of the subgenus should be “smooth surface” but not “undulated lines,” and P. textile should be classified to the Neotapes subgenus.  相似文献   

7.
Bunostomum trigonocephalum and Bunostomum phlebotomum are blood-feeding hookworms of sheep and cattle, causing considerable economic losses to the live stock industries. Studying genetic variability within and among hookworm populations is critical to addressing epidemiological and ecological questions. Mitochondrial (mt) DNA is known to provide useful markers for investigations of population genetics of hookworms, but mt genome sequence data are scant. In the present study, the complete mitochondrial DNA (mtDNA) sequences of the sheep and goat hookworm B. trigonocephalum were determined for the first time, and the mt genome of B. phlebotomum from yak in China was also sequenced for comparative analyses of their gene contents and genome organizations. The lengths of mt DNA sequences of B. trigonocephalum sheep isolate, B.trigonocephalum goat isolate and B. phlebotomum China yak isolate were 13,764 bp, 13,771 bp and 13,803 bp in size, respectively. The identity of the mt genomes was 99.7% between B. trigonocephalum sheep isolate and B. trigonocephalum goat isolate. The identity of B. phlebotomum China yak isolate mt genomes was 85.3% with B. trigonocephalum sheep isolate, and 85.2% with B. trigonocephalum goat isolate. All the mt genes of the two hookworms were transcribed in the same direction and gene arrangements were consistent with those of the GA3 type, including 12 protein-coding genes, 2 rRNA genes and 22 tRNA genes, but lacking ATP synthetase subunit 8 gene. The mt genomes of B. trigonocephalum and B. phlebotomum were similar to prefer bases A and T, the contents of A + T are 76.5% (sheep isolate), 76.4% (goat isolate) and 76.9% (China yak isolate), respectively. Phylogenetic relationships reconstructed using concatenated amino acid sequences of 12 protein-coding genes with three methods (maximum likelihood, Bayesian inference and neighbor joining) revealed that the B. trigonocephalum and B. phlebotomum represent distinct but closely-related species. These data provide novel and useful genetic markers for studying the systematics, and population genetics of the two ruminant hookworms.  相似文献   

8.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   

9.
Mitogenomes can provide information for phylogenetic analysis and evolutionary biology. The Araneae is one of the largest orders of Arachnida with great economic importance. In order to develop mitogenome data for this significant group, we determined the complete mitogenomes of two long jawed spiders Tetragnatha maxillosa and T. nitens and performed the comparative analysis with previously published spider mitogenomes. The circular mitogenomes are 14578 bp long with A+T content of 74.5% in T. maxillosa and 14639 bp long with A+T content of 74.3% in T. nitens, respectively. Both the mitogenomes contain a standard set of 37 genes and an A+T-rich region with the same gene orientation as the other spider mitogenomes, with the exception of the different gene order by the rearrangement of two tRNAs (trnW and trnG). Most of the tRNAs lose TΨC arm stems and have unpaired amino acid acceptor arms. As interesting features, both trnSAGN and trnSUCN lack the dihydrouracil (DHU) arm and long tandem repeat units are presented in the A+T-rich region of both the spider mitogenomes. The phylogenetic relationships of 23 spider mitogenomes based on the concatenated nucleotides sequences of 13 protein-coding genes indicated that the mitogenome sequences could be useful in resolving higher-level relationship of Araneae. The molecular information acquired from the results of this study should be very useful for future researches on mitogenomic evolution and genetic diversities in spiders.  相似文献   

10.
The mt genome of Paa spinosa (Anura: Ranoidae) is a circular molecule of 18,012 bp in length, containing 38 genes (including an extra copy of tRNA-Met gene). This mt genome is characterized by three distinctive features: a cluster of rearranged tRNA genes (LTPF tRNA gene cluster), a tandem duplication of tRNA-Met gene (Met1 and Met2), and distinct repeat regions at both 5′ and 3′-sides in the control region. Comparing the locations and the sequences of all tRNA-Met genes among Ranoidae, and constructing NJ tree of the nucleotide of those tRNA-Met genes, we suggested a tandem duplication of tRNA-Met gene can be regarded as a synapomorphy of Dicroglossinae. To further investigate the phylogenetic relationships of anurans, phylogenetic analyses (BI, ML and MP) based on the nucleotide dataset and the corresponding amino acid dataset of 11 protein-coding genes (except ND5 and ATP8) arrived at the similar topology.  相似文献   

11.
The mitogenome of Chilo auricilius (Lepidoptera: Pyraloidea: Crambidae) was a circular molecule made up of 15,367 bp. Sesamia inferens, Chilo suppressalis, Tryporyza incertulas, and C. auricilius, are closely related, well known rice stem borers that are widely distributed in the main rice-growing regions of China. The gene order and orientation of all four stem borers were similar to that of other insect mitogenomes. Among the four stem borers, all AT contents were below 83%, while all AT contents of tRNA genes were above 80%. The genomes were compact, with only 121–257 bp of non-coding intergenic spacer. There are 56 or 62-bp overlapping nucleotides in Crambidae moths, but were only 25-bp overlapping nucleotides in the noctuid moth S. inferens. There was a conserved motif ‘ATACTAAA’ between trnS2 (UCN) and nad1 in Crambidae moths, but this same region was ‘ATCATA’ in the noctuid S. inferens. And there was a 6-bp motif ‘ATGATAA’ of overlapping nucleotides, which was conserved in Lepidoptera, and a 14-bp motif ‘TAAGCTATTTAAAT’ conserved in the three Crambidae moths (C. suppressalis, C. auricilius and T. incertulas), but not in the noctuid. Finally, there were no stem-and-loop structures in the two Chilo moths.  相似文献   

12.
To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.  相似文献   

13.
We determined the complete mitochondrial genome sequences for Bursaphelenchus mucronatus, one species of pinewood nematode. The genome is a circular-DNA molecule of 14,583 bp (195 bp smaller than its congener Bursaphelenchus xylophilus) and contains 12 protein-coding genes (lacking atp8), 22 tRNA genes, and 2 rRNA genes encoded in the same direction, consistent with most other nematodes. Based on sequence comparison of mtDNA genomes, we developed a PCR-based molecular assay to differentiate B. xylophilus (highly pathogenic) and B. mucronatus (relatively less virulent) using species-specific primers. The molecular identification system employs multiplex-PCR and is very effective and reliable for discriminating these Bursaphelenchus species, which are economically important, but difficult to distinguish based on morphology. The comparison of the mitochondrial genomes and molecular identification system of the two species of Bursaphelenchus spp. should provide a rich source of genetic information to support the effective control and management (quarantine) of the pine wilt disease caused by pinewood nematodes.  相似文献   

14.
Members of the Calliphoridae (blowflies) are significant for medical and veterinary management, due to the ability of some species to consume living flesh as larvae, and for forensic investigations due to the ability of others to develop in corpses. Due to the difficulty of accurately identifying larval blowflies to species there is a need for DNA-based diagnostics for this family, however the widely used DNA-barcoding marker, cox1, has been shown to fail for several groups within this family. Additionally, many phylogenetic relationships within the Calliphoridae are still unresolved, particularly deeper level relationships. Sequencing whole mt genomes has been demonstrated both as an effective method for identifying the most informative diagnostic markers and for resolving phylogenetic relationships. Twenty-seven complete, or nearly so, mt genomes were sequenced representing 13 species, seven genera and four calliphorid subfamilies and a member of the related family Tachinidae. PCR and sequencing primers developed for sequencing one calliphorid species could be reused to sequence related species within the same superfamily with success rates ranging from 61% to 100%, demonstrating the speed and efficiency with which an mt genome dataset can be assembled. Comparison of molecular divergences for each of the 13 protein-coding genes and 2 ribosomal RNA genes, at a range of taxonomic scales identified novel targets for developing as diagnostic markers which were 117–200% more variable than the markers which have been used previously in calliphorids. Phylogenetic analysis of whole mt genome sequences resulted in much stronger support for family and subfamily-level relationships. The Calliphoridae are polyphyletic, with the Polleninae more closely related to the Tachinidae, and the Sarcophagidae are the sister group of the remaining calliphorids. Within the Calliphoridae, there was strong support for the monophyly of the Chrysomyinae and Luciliinae and for the sister-grouping of Luciliinae with Calliphorinae. Relationships within Chrysomya were not well resolved. Whole mt genome data, supported the previously demonstrated paraphyly of Lucilia cuprina with respect to L. sericata and allowed us to conclude that it is due to hybrid introgression prior to the last common ancestor of modern sericata populations, rather than due to recent hybridisation, nuclear pseudogenes or incomplete lineage sorting.  相似文献   

15.
Zhou X  Jin P  Qin S  Chen L  Ma F 《Gene》2012,492(1):110-116
Ascaris lumbricoides and Ascaris suum are parasitic nematodes living in the small intestine of humans and pigs, and can cause the disease ascariasis. For long, there has been controversy as to whether the two ascaridoid taxa represent the same species due to their significant resemblances in morphology. However, the complete mitochondrial (mt) genome data have been lacking for A. lumbricoides in spite of human and animal health significance and socio-economic impact globally of these parasites. In the present study, we sequenced the complete mt genomes of A. lumbricoides and A. suum (China isolate), which was 14,303 bp and 14,311 bp in size, respectively. The identity of the mt genomes was 98.1% between A. lumbricoides and A. suum (China isolate), and 98.5% between A. suum (China isolate) and A. suum (USA isolate). Both genomes are circular, and consist of 36 genes, including 12 genes for proteins, 2 genes for rRNA and 22 genes for tRNA, which are consistent with that of all other species of ascaridoid studied to date. All genes are transcribed in the same direction and have a nucleotide composition high in A and T (71.7% for A. lumbricoides and 71.8% for A. suum). The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. Phylogenetic analyses of A. lumbricoides and A. suum using concatenated amino acid sequences of 12 protein-coding genes, with three different computational algorithms (Bayesian analysis, maximum likelihood and maximum parsimony) all clustered in a clade with high statistical support, indicating that A. lumbricoides and A. suum was very closely related. These mt genome data and the results provide some additional genetic evidence that A. lumbricoides and A. suum may represent the same species. The mt genome data presented in this study are also useful novel markers for studying the molecular epidemiology and population genetics of Ascaris.  相似文献   

16.
The complete mitochondrial genome of the sycamore lace bug, Corythucha ciliata, was sequenced in this study. It represents the first sequenced mitogenome of family Tingidae in Heteroptera. The mitogenome of C. ciliata is 15,257 bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a large non-coding region. Gene arrangement, nucleotide content, codon usage, and amino acid composition and asymmetry indicate a high degree of conservation with six other species of Cimicomorpha. The 13 PCGs initiated with ATN as the start codon and terminated with TAA, TA or T as stop codon. The evolutionary rate of each PCG was different, among which ATP8 showed the highest rate while ATP6 indicated the lowest rate. The 22 tRNAs genes apparently fold into a typical cloverleaf structure; however, the anticodon (TTC) of trnSer (AGN) differs from other Heteropteran insects. Secondary structure modeling of rRNA genes revealed similarity to other insects, except for two incomplete helices (H1648 and H2735) in lrRNA. The predicted secondary structure of lrRNA indicates 45 helices in six domains, whereas srRNA has 27 helices in three domains. Three potential stem–loops and two tandem repeats (–TCTAAT–) were identified in the A+T-rich region. Phylogenetic analysis indicated that C. ciliata is a sister group to other Heteroptera species based on analysis of the 13 PCGs.  相似文献   

17.
Yang F  Du YZ  Wang LP  Cao JM  Yu WW 《Gene》2011,485(1):7-15
The complete mitochondrial genome sequence of Liriomyza sativae Blanchard (15,551 bp) was determined and analyzed in this study. The circular genome contained 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and an A + T-rich region. The initiation codons of COI and ND1 were ‘ATCA’ and ‘GTG’, respectively. ND2 gene used the truncated termination codon ‘T’. All the tRNA genes had the typical cloverleaf secondary structures except for tRNASer(AGN) gene, which was found with the absence of a DHU arm. In addition, a tRNA-like secondary structure (tRNAMet) was found in the A + T-rich region. The great difference was that the length of L. sativae A + T-rich region was 597 bp shorter than that of Liriomyza trifolii (Burgess). Meanwhile, some minor differences such as ‘TATA’ block were also observed in L. sativae in contrast to ‘TACA’ block in L. trifolii. There were also some essential structure elements such as ‘TATA’ block, ‘G(A)nT’ block, poly-T stretch and stem-and-loop structure in the A + T-rich region of L. sativae mitochondrial genome.  相似文献   

18.
Members of subclass Copepoda are abundant, diverse, and—as a result of their variety of ecological roles in marine and freshwater environments—important, but their phylogenetic interrelationships are unclear. Recent studies of arthropods have used gene arrangements in the mitochondrial (mt) genome to infer phylogenies, but for copepods, only seven complete mt genomes have been published. These data revealed several within-order and few among-order similarities. To increase the data available for comparisons, we sequenced the complete mt genome (13,831 base pairs) of Amphiascoides atopus and 10,649 base pairs of the mt genome of Schizopera knabeni (both in the family Miraciidae of the order Harpacticoida). Comparison of our data to those for Tigriopus japonicus (family Harpacticidae, order Harpacticoida) revealed similarities in gene arrangement among these three species that were consistent with those found within and among families of other copepod orders. Comparison of the mt genomes of our species with those known from other copepod orders revealed the arrangement of mt genes of our Harpacticoida species to be more similar to that of Sinergasilus polycolpus (order Poecilostomatoida) than to that of T. japonicus. The similarities between S. polycolpus and our species are the first to be noted across the boundaries of copepod orders and support the possibility that mt-gene arrangement might be used to infer copepod phylogenies. We also found that our two species had extremely truncated transfer RNAs and that gene overlaps occurred much more frequently than has been reported for other copepod mt genomes.  相似文献   

19.
The complete mitochondrial genome (mitogenome) of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae) was determined. The circular genome is 15,345 bp long, and presents a typical gene organization and order for sequenced mitogenomes of Bombycidea species. The nucleotide composition of the genome is highly A+T biased, accounting for 79.86%. The AT skew of the genome is slightly negative, indicating the occurrence of more Ts than As, as found in other Saturniidae species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI and COII, which are tentatively designated by CGA and GTG, respectively, as observed in other insects. Four of 13 PCGs, including COI, COII, ATP6, and ND3, harbor the incomplete termination codons, T or TA. With an exception for tRNASer(AGN), all other tRNAs can form a typical clover-leaf structure of mitochondrial tRNA. The 359 bp A+T-rich region of S. c. cynthia contains non-repetitive sequences, but harbors several features common to the Bombycidea insects, including the motif ATAGA followed by a poly-T stretch of 19 bp, a microsatellite-like (AT)7 element preceded by the ATTTA motif, and a poly-A element upstream tRNAMet. The phylogenetic analyses support the morphology-based current hypothesis that Bombycidae and Saturniidae are monophyletic. Our result confirms that Saturniini and Attacini form a reciprocal monophyletic group within Saturniidae.  相似文献   

20.
The complete 15,223-bp mitochondrial genome (mitogenome) of Tryporyza incertulas (Walker) (Lepidoptera: Pyraloidea: Crambidae) was determined, characterized and compared with seven other species of superfamily Pyraloidea. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. Compared with other moths of Pyraloidea, the A + T biased (77.0%) of T. incertulas was the lowest. Eleven protein-coding genes (PCGs) utilized the standard ATN, but cox1 used CGA and nad4 used AAT as the initiation codons. Ten protein-coding genes had the common stop codon TAA, except nad3 having TAG as the stop codon, and cox2, nad4 using T, TA as the incomplete stop codons, respectively. All of the tRNA genes had typical cloverleaf secondary structures except trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. There was a spacer between trnQ and nad2, which was common in Lepidoptera moths. A 6-bp motif ‘ATACTA’ between trnS2(UCN) and nad1, a 7-bp motif “AGC(T)CTTA” between trnW and trnC and a 6-bp motif “ATGATA” of overlapping region between atp8 and atp6 were found in Pyraloidea moths. The A + T-rich region contained an ‘ATAGT(A)’-like motif followed by a poly-T stretch. In addition, two potential stem-loop structures, a duplicated 19-bp repeat element, and two microsatellites ‘(TA)12’ and ‘(TA)9’ were observed in the A + T-rich region of T. incertulas mitogenome. Finally, the phylogenetic relationships of Pyraloidea species were constructed based on amino acid sequences of 13 PCGs of mitogenomes using Bayesian inference (BI) and maximum likelihood (ML) methods. These molecular-based phylogenies supported the morphological classification on relationships within Pyraloidea species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号