首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

MicroRNAs (miRNAs) are small, highly conserved, non-coding RNA that alter protein expression and regulate multiple intracellular processes, including those involved in the response to cellular stress. Alterations in miRNA expression may occur following exposure to several stress-inducing anticancer agents including ionizing radiation, etoposide, and hydrogen peroxide (H2O2).

Methodology/Principal Findings

Normal human fibroblasts were exposed to radiation, H2O2, or etoposide at doses determined by clonogenic cell survival curves. Total RNA was extracted and miRNA expression was determined by microarray. Time course and radiation dose responses were determined using RT-PCR for individual miRNA species. Changes in miRNA expression were observed for 17 miRNA species following exposure to radiation, 23 after H2O2 treatment, and 45 after etoposide treatment. Substantial overlap between the miRNA expression changes between agents was observed suggesting a signature miRNA response to cell stress. Changes in the expression of selected miRNA species varied in response to radiation dose and time. Finally, production of reactive oxygen species (ROS) increased with increasing doses of radiation and pre-treatment with the thiol antioxidant cysteine decreased both ROS production and the miRNA response to radiation.

Conclusions

These results demonstrate a common miRNA expression signature in response to exogenous genotoxic agents including radiation, H2O2, and etoposide. Additionally, pre-treatment with cysteine prevented radiation-induced alterations in miRNA expression which suggests that miRNAs are responsive to oxidative stress. Taken together, these results imply that miRNAs play a role in cellular defense against exogenous stress and are involved in the generalized cellular response to genotoxic oxidative stress.  相似文献   

2.
3.
BackgroundThe use of basidiomycetes for metal removal is an alternative to traditional methods. In this, the biomass acts as a natural ionic exchanger removing metals from solution.ObjectiveTo develop a laminar biosorbent using a basidiomycete fungus resistant to high Cd, Ni and Pb concentrations.MethodsThe tolerance of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium was evaluated using increasing concentrations of the heavy metal salts, cadmium sulphate, lead acetate and nickel chloride. A biosorbent system was developed based on polyethylene sheets with a fungal biomass. It was evaluated in bubble columns using synthetic wastewater with the 3 metal salts at a rate of 300 mg/l. Finally, in a complementary experiment using shake flasks, the effect of a higher amount of biomass related to the metal removal efficiency was evaluated.ResultsP. chrysosporium strain was more tolerant to C4H6O4Pb (10,000 mg/l), Cl2Ni (300 mg/l) and CdSO4·8H2O (1,500 mg/l). In a reactor, under non-ligninolytic conditions, the fungus removed 69% of the chemical oxygen demand and produced enzymes such as LiP (0.01 U/l) and MnP (0.6 U/l.). An accumulation of metals in the wall was observed. By increasing the biomass to 1.6 (w/v), the metal biosorption was favored in the mixture (57% Pb, 74% Cd, and 98% Ni) and separately (95% Pb, 60% Cd, and 56% Ni). Competition between Ni and Pb by ligands of the wall was observed.ConclusionA novel laminar system based on P. chrysosporium viable biomass was developed. It has a large surface area and tolerance to high concentrations of Cd, Ni and Pb. It seems to be an alternative for the removal of metals from water.  相似文献   

4.
Increasing evidence suggests that Alzheimer’s disease is associated with mitochondrial dysfunction and oxidative damage. To develop a cellular model of Alzheimer’s disease, we investigated the effects of thioredoxin (Trx) expression in the response to mitochondrial dysfunction-enhanced oxidative stress in the SH-SY5Y human neuroblastoma cells. Treatment of SH-SY5Y cells with 15 mM of NaN3, an inhibitor of cytochrome c oxidase (complex IV), led to alteration of mitochondrial membrane potential but no significant changes in cell viability. Therefore, cells were first treated with 15 mM NaN3 to induce mitochondrial dysfunction, then, exposed to different concentrations of H2O2. Cell susceptibility was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and morphological observation. Expressions of Trx mRNA and protein were determined by RT-PCR; and Western-blot analysis, respectively. It was found that the SH-SY5Y cells with mitochondrial impairment had lower levels of Trx mRNA and protein, and were significantly more vulnerable than the normal cells after exposure to H2O2 while no significant changes of Trx mRNA and protein in SH-SY5Y cells exposed to H2O2 but without mitochondrial complex IV inhibition. These results, together with our previous study in primary cultured neurons, demonstrated that the increased susceptibility to oxidative stress is induced at least in part by the down-regulation of Trx in SH-SY5Y human neuroblastoma cells with mitochondrial impairment and also suggest the mitochondrial dysfunction-enhanced oxidative stress could be used as a cellular model to study the mechanisms of Alzheimer’s disease and agents for prevention and treatment.  相似文献   

5.
To get insights into the functions of metallothionein (MT) in plant response to multiple stresses, expressions of 10 rice MT genes (OsMTs) and 7 Arabidopsis MT genes (AtMTs) were comprehensively analyzed under combined heavy metal and salt stress. OsMT1a, OsMT1b, OsMT1c, OsMT1g, and OsMT2a were increased by different heavy metals. Notably, ABA remarkably increased OsMT4 up to 80-fold. Combined salt and heavy metals (Cd, Pb, Cu) synergistically increased OsMT1a, OsMT1c, and OsMT1g, whereas combined salt and H2O2 or ABA synergistically increased OsMT1a and OsMT4. Heavy metals decreased AtMT1c, AtMT2b, and AtMT3 but cold or ABA increased AtMT1a, AtMT1c, and AtMT2a. AtMT4a was markedly increased by salt stress. Combined salt and other stresses (Pb, Cd, H2O2) synergistically increased AtMT4a. Taken together, these findings suggest that MTs in monocot and dicot respond differently to combined stresses, which provides a valuable basis to further determine the roles of MTs in broad stress tolerance.  相似文献   

6.
In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu+2, Hg+2, Pb+2, and Zn+2). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.  相似文献   

7.
Reactive oxygen species (ROS) has been proposed to play an important role in heavy metal-associated toxicity and pathology. Conventional methods for determining ambient redox state in cells are usually labor-intensive, precluding real-time or single-cell monitoring changes in intracellular redox poise resulting from either metabolic processes or environmental influences. Redox-sensitive green fluorescent protein (roGFP) was expressed in Saccharomyces cerevisiae and recombinant cells were evaluated in monitoring the changes in the redox state of living cells when challenged with toxicologically relevant metal ions. roGFP expressed in yeast responded not only to typical membrane-permeant oxidants and reductants, but also to toxicological metal ion-induced intracellular redox changes. Moreover, exposure of yeast cells to NaAsO2 or Pb(NO3)2 at concentrations that induced redox changes reported by roGFP caused up to two- to three-fold increases in DNA mutation frequency. This mutagenic effect was largely caused by oxidative stress since blocking the production of hydryl radicals significantly reduced the mutation rate as well as delayed the cell death.  相似文献   

8.
The effects of several metals on microbial methane, carbon dioxide, and sulfide production and microbial ATP were examined in sediments from Spartina alterniflora communities. Anaerobically homogenized sediments were amended with 1,000 ppm (ratio of weight of metal to dry weight of sediment) of various metals. Time courses in controls were similar for CH4, H2S, and CO2, with short initial lags (0 to 4 h) followed by periods of constant gas production (1 to 2 days) and declining rates thereafter. Comparisons were made between control and experimental assays with respect to initial rates of production (after lag) and overall production. Methane evolution was inhibited both initially and overall by CH3HgCl, HgS, and NaAsO2. A period of initial inhibition was followed by a period of overall stimulation with Hg, Pb, Ni, Cd, and Cu, all as chlorides, and with ZnSO4, K2CrO4, and K2Cr2O7. Production of CO2 was generally less affected by the addition of metals. Inhibition was noted with NaAsO2, CH3HgCl, and Na2MoO4. Minor stimulation of CO2 production occurred over the long term with chlorides of Hg, Pb, and Fe. Sulfate reduction was inhibited in the short term by all metals tested and over the long term by all but FeCl2 and NiCl2. Microbial biomass was decreased by FeCl2, K2Cr2O7, ZnSO4, CdCl2, and CuCl2 but remained generally unaffected by PbCl2, HgCl2, and NiCl2. Although the majority of metals produced an immediate inhibition of methanogenesis, for several metals this was only a transient phenomenon followed by an overall stimulation. The initial suppression of methanogenesis may be relieved by precipitation, complexation, or transformation of the metal (possibly by methylation), with the subsequent stimulation resulting from a sustained inhibition of competing organisms (e.g., sulfate-reducing bacteria). For several environmentally significant metals, severe metal pollution may substantially alter the flow of carbon in sediments.  相似文献   

9.
Aging is a major risk factor for many chronic diseases due to increased vulnerability to external stress and susceptibility to disease. Aging is associated with metabolic liver disease such as nonalcoholic fatty liver. In this study, we investigated changes in lipid metabolism during aging in mice and the mechanisms involved. Lipid accumulation was increased in liver tissues of aged mice, particularly cholesterol. Increased uptake of both cholesterol and glucose was observed in hepatocytes of aged mice as compared with younger mice. The mRNA expression of GLUT2, GK, SREBP2, HMGCR, and HMGCS, genes for cholesterol synthesis, was gradually increased in liver tissues during aging. Reactive oxygen species (ROS) increase with aging and are closely related to various aging‐related diseases. When we treated HepG2 cells and primary hepatocytes with the ROS inducer, H2O2, lipid accumulation increased significantly compared to the case for untreated HepG2 cells. H2O2 treatment significantly increased glucose uptake and acetyl‐CoA production, which results in glycolysis and lipid synthesis. Treatment with H2O2 significantly increased the expression of mRNA for genes related to cholesterol synthesis and uptake. These results suggest that ROS play an important role in altering cholesterol metabolism and consequently contribute to the accumulation of cholesterol in the liver during the aging process.  相似文献   

10.
Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8–16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙? and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25–40 %. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.  相似文献   

11.
12.
The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for ‘clean’ water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl2), copper [as copper II nitrate hydrate, Cu(NO3)2 2.5 H2O] and lead [as lead II nitrate, Pb(NO3)2], monitored by changes in LC50 concentrations of the metals, changed from 6.07 µg/L, 12.42 µg/L and 493.32 µg/L to 4.45 µg/L, 25.02 µg/L and 516.69 µg/L, respectively, after three generations of exposure. The metal‐selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal‐selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness.  相似文献   

13.

Aims

It was shown previously that Arabidopsis (Arabidopsis thaliana) desaturase 2 (ADS2) cDNA was isolated and it was shown that the expression of ADS2 was organ-dependent and up-regulated by low temperature. However, little is known about the role of ADS2 gene in heavy metal resistance in plants. In this study, we showed that ADS2 gene is involved in the regulation of cadmium (Cd) and lead (Pb) resistance.

Methods

For heavy metal resistance tests, seeds were germinated and grown on 1/2 MS media supplemented with the indicated concentrations of metal ions. To quantify root length, plants were grown vertically in plates. For heavy metal treatments, two-week old wild-type seedlings grown on MS media were treated with cadmium (Cd) or lead (Pb) for 24 h, and then sampled for metal content measurement and qPCR analysis.

Results

ADS2 was strongly repressed by Cd(II), and ads2-1 mutant plants showed increased Cd(II) resistance. A lower Cd content was detected in ads2-1 plants than in wild-type plants subjected to Cd(II) treatment, which was associated with activation in expression of AtPDR8 gene, a pump excluding Cd(II) and/or Cd(II)-containing toxic compounds from the cytoplasm, suggesting that ADS2-mediated Cd(II) resistance is AtPDR8 dependent. We also found that ads2-1 plants showed increased Pb(II) sensitivity, and ADS2 was strongly repressed by hydrogen peroxide (H2O2) but not by Pb(II). The ads2-1 mutant showed increased sensitivity to oxidative stresses mediated by H2O2 and paraquat, and higher levels of H2O2 accumulation were observed in leaves of ads2-1 plants than those of wild-type plants when subjected to Pb(II) and H2O2, indicating that ADS2 mediates Pb(II) resistance indirectly by impaired ROS scavenging.

Conclusions

ADS2 gene mediates Cd(II) and Pb(II) resistance, at least in part, through two distinct mechanisms, an AtPDR8-dependent mechanism and a ROS detoxification system-mediated mechanism, respectively.  相似文献   

14.
In animals, microRNAs (miRNAs), typically, pair to sites of partial complementarity in the 3′-untranslated regions (3′UTRs) of target genes. Regulation by miRNAs often results in down-regulation of target mRNA and protein expression by mechanisms that are yet to be fully elucidated. Additionally, changes in environmental conditions have been shown to influence miRNA function in some cell culture systems. Here, we report the effect of nutrient deprivation on regulation of an endogenous miRNA target in developing worms. In Caenorhabditis elegans, the lin-4 miRNA recognizes multiple sites in the lin-14 3′UTR and directs mRNA degradation and translational repression, but it is unclear how these processes are coupled. In this study, we demonstrate that nutrient deprivation results in loss of lin-14 mRNA, but not protein, repression. In worms removed from feeding conditions, lin-14 mRNA reaccumulates despite the continued expression of lin-4 miRNA. The relative increase in lin-14 mRNA levels during nutrient deprivation is less pronounced in genetic mutants lacking lin-4 miRNA or the lin-14 3′UTR target sites. In conclusion, regulation of lin-14 at the mRNA and protein levels can be uncoupled by changes in culture conditions, indicating that miRNA function can be modulated by environment in multicellular organisms. The awareness that endogenous miRNA pathways can be sensitive to environment is an important consideration for elucidating the mechanism used by miRNAs to regulate target mRNA and protein expression.  相似文献   

15.
16.
Growth responses of Avicennia marina seedlings to contamination by different concentrations of two essential (Cu, Zn) and two non-essential (Pb, Hg) trace metals were studied under glasshouse conditions. We tested the hypothesis that soil retention and root ultrafiltration would exclude most of the trace metals, and that those that are absorbed and translocated to the shoots would interfere with plant performance and be excreted via leaf salt glands. One-month-old seedlings were subjected to Cu, Zn, Pb and Hg at concentrations of 0, 40, 80, 120 and 160 μg g−1 sediment for 12 months in a randomized complete block design (n = 6). Photosynthesis was measured at the end of 12 months of trace metal exposure with a portable gas exchange system and chlorophyll fluorescence with a pulse-modulated fluorometer. After morphometric measurements, plants were harvested and analyzed for Cu, Zn, Pb and Hg by atomic absorption spectroscopy. Total dry biomass decreased with increasing trace metal concentration for all metals. In the 160 μg g−1 Cu, Zn, Hg and Pb treatments, total biomass was significantly lower than the control value by 43%, 37%, 42% and 40%, respectively. Decreases in plant height and number of leaves followed trends similar to those for total biomass and ranged from 37% to 60%, compared to the controls. Decreases in chlorophyll content in the trace metal treatments ranged from 50% to 58% compared to the control. Carbon dioxide exchange, quantum yield of photosystem II (PSII), electron transport rate (ETR) through PSII and photosynthetic efficiency of PSII (Fv/Fm) were highest in the control treatment and decreased with increasing trace metal concentrations. Decreases in CO2 exchange in the 160 μg g−1 treatments for all trace metals ranged from 50% to 60%. Concentrations of all trace metals in plant organs increased with increasing metal concentrations and were higher in roots than in shoots, with concentrations of Cu and Zn being considerably higher than those of Hg and Pb. Qualitative elemental analyses and X-ray mapping of crystalline deposits over the glands at the leaf surfaces indicated that Cu and Zn were excreted from the salt glands, while Hg and Pb were absent, at least being below the limits of detection. These results demonstrate that growth processes are sensitive to trace metals and therefore can be considered as a cost of metal tolerance, but salt glands of this mangrove species do contribute eliminating at least part of physiologically essential trace metals if taken up in excess.  相似文献   

17.
Vitiligo is an autoimmune disease characterized by depigmentation. Kaempferol is a flavonoid compound with broad anti-inflammatory and antioxidant properties. The purpose of this study was to investigate the effect of kaempferol on melanogenesis in PIG1 normal human skin melanocytes and its response to oxidative stress. The effect of kaempferol on melanin synthesis in PIG1 normal human skin melanocytes was explored by measuring tyrosinase activity, melanin content, mRNA and protein expression of key enzymes and expression of related pathway proteins. The effects of kaempferol pretreatment on cell viability, apoptosis, ROS level and HO-1 protein level under H2O2 stimulation were explored. When treated with kaempferol, the tyrosinase activity and melanin content of PIG1 cells increased, the mRNA and protein expressions of TYR, TRP1, TRP2 and MITF increased, and the phosphorylation level of ERK1/2 increased. Upon the stimulation of H2O2, kaempferol reduced the production of ROS, decreased apoptosis and increased the protein expression of HO-1 in PIG1 cells. In addition, kaempferol inhibited oxidative stress-induced melanin reduction and promoted melanin synthesis in PIG1 cells and protected against H2O2-induced oxidative stress damage.  相似文献   

18.
Several Lupinus species, for example, Lupinus albus, Lupinus luteus, Lupinus angustifolius, and Lupinus hispanicus were used to accumulate Mn(II), Cd(II), Pb(II), Cr(III), Cr(VI), Hg2+, and CH3Hg+ from waste waters. The influence of different species concentrations (50 and 100 mg L-1) and pH on growing behavior as well as the resulting distribution of metals in the plants were investigated. The results obtained showed that lupins were able to germinate and to grow in the presence of the metals mentioned above, even when they were present at levels as high as 50 mg L-1. Accumulation of Pb(II), Cr(III), and Cd(II) was higher in roots than in shoots. As far as mercury is concerned, the highest CH3Hg and Hg2+ accumulation was detected in roots, but fast transport toward the leaves was noticed. In contrast to mercury, the uptake of chromium seems to be influenced by the chemical form of the analyte, remaining Cr(VI) in solution. No differences in growing behavior and accumulation were observed for the four Lupinus species studied. Even though plants were exposed only a relatively short time to the metal solutions, metal concentrations of approximately 2 g/kg of dry matter were detected in the young lupins plants. The feasibility of utilizing Lupinus plants for the removal of heavy metals from wastewater was also investigated. Lupins were able to grow under extreme conditions (wastewater, pH lower than 2) and to remove 98% of the initial amount of toxic metals present in the sample.  相似文献   

19.
20.
The Vitamin D Receptor (VDR) is a member of the nuclear receptor superfamily and is of therapeutic interest in cancer and other settings. Regulation of microRNA (miRNA) by the VDR appears to be important to mediate its actions, for example, to control cell growth. To identify if and to what extent VDR-regulated miRNA patterns change in prostate cancer progression, we undertook miRNA microarray analyses in 7 cell models representing non-malignant and malignant prostate cells (RWPE-1, RWPE-2, HPr1, HPr1AR, LNCaP, LNCaP-C4–2, and PC-3). To focus on primary VDR regulatory events, we undertook expression analyses after 30 minutes treatment with 1α,25(OH)2D3. Across all models, 111 miRNAs were significantly modulated by 1α,25(OH)2D3 treatment. Of these, only 5 miRNAs were modulated in more than one cell model, and of these, only 3 miRNAs were modulated in the same direction. The patterns of miRNA regulation, and the networks they targeted, significantly distinguished the different cell types. Integration of 1α,25(OH)2D3-regulated miRNAs with published VDR ChIP-seq data showed significant enrichment of VDR peaks in flanking regions of miRNAs. Furthermore, mRNA and miRNA expression analyses in non-malignant RWPE-1 cells revealed patterns of miRNA and mRNA co-regulation; specifically, 13 significant reciprocal patterns were identified and these patterns were also observed in TCGA prostate cancer data. Lastly, motif search analysis revealed differential motif enrichment within VDR peaks flanking mRNA compared to miRNA genes. Together, this study revealed that miRNAs are rapidly regulated in a highly cell-type specific manner, and are significantly co-integrated with mRNA regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号