首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autosomal recessive mutations in the ALS2 gene lead to a clinical spectrum of motor dysfunction including juvenile onset amyotrophic lateral sclerosis (ALS2), primary lateral sclerosis, and hereditary spastic paraplegia. The 184-kDa alsin protein, encoded by the full-length ALS2 gene, contains three different guanine-nucleotide-exchange factor-like domains, which may play a role in the etiology of the disease. Multiple in vitro biochemical and cell biology assays suggest that alsin dysfunction affects endosome trafficking through a Rab5 small GTPase family-mediated mechanism. Four ALS2-deficient mouse models have been generated by different groups and used to study the behavioral and pathological impact of alsin deficiency. These mouse models largely fail to recapitulate hallmarks of motor neuron disease, but the subtle deficits that are observed in behavior and pathology have aided in our understanding of the relationship between alsin and motor dysfunction. In this review, we summarize recent clinical and molecular reports regarding alsin and attempt to place these results within the larger context of motor neuron disease.  相似文献   

2.
3.
Primary hypertrophic osteoarthropathy (PHO) is a rare monogenetic disease characterized by digital clubbing, periostosis and pachydermia. Mutations in the 15-hydroxy-prostaglandin dehydrogenase (HPGD) gene and solute carrier organic anion transporter family member 2A1 (SLCO2A1) gene have been shown to be associated with PHO. Here, we described clinical characteristics in a Chinese patient with PHO, and identified two novel mutations in SLCO2A1: a heterozygous guanine-to-thymidine transition at the invariant − 1 position of the acceptor site of intron 2 (c.235-1G > T) and a heterozygous missense mutation p.Pro219Leu (c.656C > T) in exon 5.  相似文献   

4.
Pompe disease is a clinically and genetically heterogeneous autosomal recessive disorder caused by lysosomal acid α-glucosidase (GAA) deficiency. We report on two affected members of a non-consanguineous Caucasian family, including a classical infantile-onset patient with severe cardiomyopathy (IO) and his paternal grandmother with the adult-onset (AO) form. Two compound heterozygous sequence variants of the GAA gene were identified in each patient by mutation analyses (IO = c.1211A > G and c.1798C > T; AO = c.1211A > G and c.692 + 5G > T). For this study, the biochemical phenotype resulting from the missense mutation c.1211A > G in exon 8, which converts a highly conserved aspartate to glycine (p.Asp404Gly), was of specific interest because it had not been reported previously. Western blotting revealed a robust expression of all GAA isoforms in quadriceps muscle of both patients (fully CRIM positive), while enzymatic activity was 3.6% (IO) and 6.6% (AO) of normal controls. To further validate these findings, the c.1211A > G sequence variant was introduced in wild type GAA cDNA and over-expressed in HEK293T cells. Site-directed mutagenesis analyses confirmed that the mutation does not affect processing or expression of GAA protein, but rather impairs enzyme function. Similar results were reported for c.1798C > T (p.Arg600Cys), which further supports the biochemical phenotype observed in IO. The third mutation (c.692 + 5G > T, in intron 3) was predicted to affect normal splicing of the GAA mRNA, and qPCR indeed verified a 4-fold lower mRNA expression in AO. It is concluded that the novel sequence variant c.1211A > G results in full CRIM but significantly lower GAA activity, which in combination with c.1798C > T leads to infantile-onset Pompe disease. We surmise that the difference in disease severity between the two family members in this study is due to a milder effect of the intronic mutation c.692 + 5G > T (vs. c.1798C > T) on phenotype, partially preserving GAA activity and delaying onset in the proband (paternal grandmother).  相似文献   

5.
The diagnosis of childhood neurological disorders remains challenging given the overlapping clinical presentation across subgroups and heterogeneous presentation within subgroups. To determine the underlying genetic cause of a severe neurological disorder in a large consanguineous Pakistani family presenting with severe scoliosis, anarthria and progressive neuromuscular degeneration, we performed genome-wide homozygosity mapping accompanied by whole-exome sequencing in two affected first cousins and their unaffected parents to find the causative mutation. We identified a novel homozygous splice-site mutation (c.3512+1G>A) in the ALS2 gene (NM_020919.3) encoding alsin that segregated with the disease in this family. Homozygous loss-of-function mutations in ALS2 are known to cause juvenile-onset amyotrophic lateral sclerosis (ALS), one of the many neurological conditions having overlapping symptoms with many neurological phenotypes. RT-PCR validation revealed that the mutation resulted in exon-skipping as well as the use of an alternative donor splice, both of which are predicted to cause loss-of-function of the resulting proteins. By examining 216 known neurological disease genes in our exome sequencing data, we also identified 9 other rare nonsynonymous mutations in these genes, some of which lie in highly conserved regions. Sequencing of a single proband might have led to mis-identification of some of these as the causative variant. Our findings established a firm diagnosis of juvenile ALS in this family, thus demonstrating the use of whole exome sequencing combined with linkage analysis in families as a powerful tool for establishing a quick and precise genetic diagnosis of complex neurological phenotypes.  相似文献   

6.

Objective

Monogenic congenital cataract is one of the most genetically heterogeneous ocular conditions with almost 30 different genes involved in its etiology. In adult patients, genotype–phenotype correlations are troubled by eye surgery during infancy and/or long-term ocular complications. Here, we describe the molecular diagnosis of GALK1 deficiency as the cause of autosomal recessive congenital cataract in a family from Costa Rica.

Methods

Four affected siblings were included in the study. All of them underwent eye surgery during the first decade but medical records were not available. Congenital cataract was diagnosed by report. Molecular analysis included genome wide homozygosity mapping using a 250 K SNP Affymetrix microarray followed by PCR amplification and direct nucleotide sequencing of candidate gene.

Results

Genome wide homozygosity mapping revealed a 6 Mb region of homozygosity shared by two affected siblings at 17q25. The GALK1 gene was included in this interval and direct sequencing of this gene revealed a homozygous c.1144C>T mutation (p.Q382*) in all four affected subjects.

Conclusions

This work demonstrates the utility of homozygosity mapping in the retrospective diagnosis of a family with congenital cataracts in which ocular surgery at early age, the lack of medical records, and the presence of long term eye complications, impeded a clear clinical diagnosis during the initial phases of evaluation.  相似文献   

7.
Pompe disease is an autosomal recessive disorder and is caused by a deficiency in acid alpha-glucosidase (GAA). A broad range of studies have been performed on Pompe patients from different countries. However, the clinical course and molecular basis of the disease in Mainland China have not been well defined. In the present study, we examined a total of 18 Chinese children with infantile-onset Pompe disease to better understand the clinical and genetic features in this population. The median age at symptom onset was 3.6 months (range: 1.7–6.8 months) and 6.3 months at diagnosis (range: 2.5–9.3 months). All but 1 patient died at a median age of 8.2 months (range: 4.7–18.7 months). Molecular analysis revealed 20 different mutations, 6 of which are novel (c.1356delC, c.378G > A, c.1827C > G, c.859-2 A > T, c.1551 + 2T > G, and c.1465G > T). The most common mutation in the study was c.1935C > A, accounting for 25% (9/36 alleles) of the mutations. Our study provides the first comprehensive examination of the clinical course of infantile-onset Pompe disease and mutations of the GAA gene for patients in Mainland China. Our results confirm the high prevalence of the c.1935C > A mutation, previously reported for other populations, in Mainland Chinese patients with infantile-onset Pompe disease. Furthermore, six novel mutations in the GAA gene are reported for the first time.  相似文献   

8.

Background/aims

A large number of studies have shown that polymorphisms in the tumor necrosis factor-α (TNF-α, TNFA) gene are implicated in susceptibility to tuberculosis (TB). However, the results are inconsistent. We performed this meta-analysis to estimate the association between polymorphisms in the TNFA gene and TB susceptibility.

Methods

Relevant studies published before March 2012 were identified by searching PubMed, ISI web of knowledge, EBSCO and CNKI. The strength of relationship between the TNFA gene and TB susceptibility was assessed using odds ratios (ORs).

Results

A total number of twenty-three case–control studies including 3630 cases and 4055 controls were identified referring to three previously chosen single-nucleotide polymorphisms (SNPs): − 308G>A, − 863C>A and − 857C>T. No association was found between − 308G>A, − 863C>A and TB susceptibility: − 308G>A (GG + GA vs. AA): OR 0.85, 95%CI: 0.55–1.30, P = 0.44; − 863C>A (CC + CA vs. AA): OR 0.93, 95%CI: 0.84–1.81, P = 0.83. Increased risk of TB was associated with − 857C>T in the dominant genetic model (CC + CT vs. TT: OR 2.13, 95%CI: 1.25–3.63, P = 0.01), the heterozygote comparison (CT vs. TT: OR 2.69, 95%CI: 1.44–5.02, P = 0.00) and the homozygote comparison (CC vs. TT: OR 2.08, 95%CI: 1.22–3.53, P = 0.01) in Asian subjects.

Conclusion

There is an increased association between TNFA − 857C>T polymorphism and TB risk among Asian subjects. No association was found between − 308G>A and − 863C>A with TB risk. Due to several limitations in the present study, well-designed epidemiological studies with large sample size among different ethnicities should be performed in the future.  相似文献   

9.
An infant with a clinical phenotype of early onset hypoaldosteronism has been screened for mutation analysis of the Cyp11b2 gene encoding aldosterone synthase enzyme. We have described a novel nonsense mutation in exon 3 (c.508 C > T) that gave rise to a shorter protein (Q170X) and two known concurrent missense mutations (c.594A > C in exon 3 and c.1157 T > C in exon 7) that led to substitution of glutamic acid for aspartic acid at amino acid position 198 (E198D) and of valine for alanine at amino acid position 386 (V386A). The father, who carried E198D plus V386A mutations, showed a fractional sodium excretion of 1.25% that was unmodified by dietary salt restriction, suggesting a mild haploinsufficiency.  相似文献   

10.
11.
Hearing loss is one of the most common sensory disorders in humans and has a genetic cause in 50% of the cases. Our recent studies indicate that nonsyndromic hearing loss (NSHL) in the Saudi Arabian population is genetically heterogeneous and is not caused by mutations in GJB2 and GJB6, the most common genes for deafness in various populations worldwide. Identification of the causative gene/mutation in affected families is difficult due to extreme genetic heterogeneity and lack of phenotypic variability. We utilized an SNP array-based whole-genome homozygosity mapping approach in search of the causative gene, for the phenotype in a consanguineous Saudi family, with five affected individuals presenting severe to profound congenital NSHL. A single shared block of homozygosity was identified on chromosome 19p13.3 encompassing GIPC3, a recently identified hearing loss gene. Subsequently, a novel mutation c.122 C>A (p.T41K) in GIPC3 was found. This is the first report of GIPC3 mutation in a Saudi family. The presence of the GIPC3 mutations in only one of 100 Saudi families with congenital NSHL suggests that it appears to be a rare cause of familial or sporadic deafness in this population.  相似文献   

12.
13.
14.

Aims

Cervical cancer is the third most frequent cancer in women worldwide, mostly treated with cisplatin-based chemoradiotherapy. Since it is known that folate metabolism might interfere with cisplatin effectiveness, we intended to study the influence of the Gamma Glutamyl Hydrolase -401C > T polymorphism in treatment response in cervical cancer.

Methods

We retrospectively reviewed the clinical data of 167 patients with bulky cervical cancer submitted to cisplatin-based chemoradiotherapy. The genotypes of GGH -401C > T SNP were determined by real-time PCR and statistical analysis was performed by χ2 test and survival analysis.

Results

The genotypes of GGH-401C > T were significantly associated with the response to platinum-based chemoradiotherapy. Treatment response was higher in patients carrying the CC genotype, who presented a significant increased chance of treatment response (survival time in months/genotype: 91 for CC Vs 72 for CT/TT; p = 0.035, log rank test). A Cox regression analysis accordingly showed that the presence of the T allele was significantly linked to a worse treatment response (HR = 3.036; CI 95% 1.032-8.934, p = 0.044).

Conclusions

The results of our study suggested the potential interest of GGH -401C > T as a predictive factor of the outcome of cervical carcinoma treated with cisplatin-based chemoradiotherapy.  相似文献   

15.
Triple A (or Allgrove) syndrome is an autosomal recessive genetic disorder. Patients typically suffer from chronic adrenal insufficiency due to resistance to ACTH (Addison's disease), achalasia of the cardia, and defective tear formation (alacrima). The syndrome is caused by mutations in the AAAS gene which encodes the protein ALADIN, a constituent of eukaryotic nuclear pore complexes. The multi-systemic nature and variable manifestations of the triple A syndrome often confound its diagnosis and limit our understanding of its exact pathogenesis. We performed mutational screening of the AAAS gene in a Greek family of four individuals, including an affected propositus with typical symptoms of late-onset triple A syndrome. Our results are consistent with an autosomal recessive pattern of inheritance within the family, caused by a functional c.43C > A mutation in exon 1 of the AAAS gene. All members of the family were also homozygous for a silent c.855C > T nucleotide change within exon 9 of the AAAS gene, representing a common single nucleotide polymorphism. The compromising c.43C > A mutation is predicted to cause a p.Gln15Lys amino acid substitution in the ALADIN protein. However, it has been suggested that the functional impact of this mutation may be more severe, causing a shift in the reading frame of AAAS gene via formation of an aberrant premature donor splice site within exon 1. We propose that mutational analysis of the AAAS gene should be considered in adult patients with one or more clinical signs of the disease, as diagnosis of late-onset cases can be ambiguous.  相似文献   

16.
Isovaleric acidemia (IVA) is a rare inherited metabolic disease caused by a deficiency in isovaleryl-CoA dehydrogenase (IVD). Newborn screening with tandem mass spectrometry leads to early identification of individuals with risk of IVA. The family specific mutations are useful for prenatal diagnosis. Molecular genetic analysis helps to further confirm the clinical diagnosis of IVA. We describe here the clinical and metabolic features of a Chinese infant with early onset IVA. Sequence analysis of the IVD gene identifies compound heterozygous mutations in this patient, c.39G > A (p.W13X) nonsense mutation and c.597C > G (p.I199M) missense mutation, both of which are previously unreported. Structural analyses suggest that the p.I199M missense mutation may destabilize the IVD monomer structure and affect the interaction between IVD and flavin adenine dinucleotide. Both the clinical and genetic features of this patient help to further expand our knowledge of IVA.  相似文献   

17.

Background

NAD (P)H:quinone oxidoreductase (NQO1) catalyzes the activation of some environmental procarcinogens present in tobacco smoke or the diet. We conducted a hospital-based case–control study to evaluate the potential association between NQO1 609C > T polymorphisms and colorectal cancer risk in a Chinese population.

Methods

The study population comprised 672 histologically confirmed colorectal cancer patients and 672 frequency-matched control subjects without cancer or systemic illness. We used PCR restriction fragment length polymorphism-based methods for genotyping analyses and unconditional logistic regression model for statistical evaluations.

Results

The risk of colorectal cancer increased with the level of smoking and decreased with the consumption of tea, fresh fruits, and vegetables. In addition, we found that the NQO1 609 CT and TT genotypes were associated with an increased risk of colorectal cancer (CT: adjusted OR = 2.02, 95% CI = 1.55–2.57; TT: adjusted OR = 2.51, 95% CI = 1.82–3.47), compared with the CC genotype. Moreover, NQO1 609C > T appeared to have a multiplicative joint effect with both tobacco smoking and alcoholic drinking (P for multiplicative interactions were 0.0001 and 0.013, respectively) on colorectal cancer risk.

Conclusion

Our findings suggest that the NQO1 609C > T polymorphism plays an important role in the development of colorectal cancer in the Chinese population, which is strengthened by alcohol drinking or tobacco smoking.  相似文献   

18.

Background

In this study, the association of asthma with CD53, a member of the tetraspanin family, was assessed for the first time in a mechanism-based study.

Methods

Genetic polymorphisms of CD53 were analyzed in 591 subjects and confirmed in a replication study of 1001 subjects. CD53 mRNA and protein levels were measured in peripheral blood leukocytes, and the effects of the promoter polymorphisms on nuclear factor binding were examined by electrophoretic mobility shift assay. Cellular functional studies were conducted by siRNA transfections.

Results

Among tagging SNPs of CD53, the − 1560 C>T in the promoter region was significantly associated with asthma risk. Compared with the CC genotype, the CT and TT genotypes were associated with a higher asthma risk, with odd ratios of 1.74 (P = 0.009) and 2.03 (P = 0.004), respectively. These findings were confirmed in the replication study with odd ratios of 1.355 (P = 0.047) and 1.495 (P = 0.039), respectively. The − 1560 C>T promoter SNP had functional effects on nuclear protein binding as well as mRNA and protein expression levels in peripheral blood leukocytes. When CD53 was knocked down by siRNA in THP-1 human monocytic cells stimulated with house dust mite, the production of inflammatory cytokines as well as NFκB activity was significantly over-activated, suggesting that CD53 suppresses over-activation of inflammatory responses.

Conclusions

The − 1560 C>T SNP is a functional promoter polymorphism that is significantly associated with population asthma risk, and is thought to act by directly modulating nuclear protein binding, thereby altering the expression of CD53, a suppressor of inflammatory cytokine production.  相似文献   

19.

Aim

The cell cycle checkpoint kinase 2 (CHK2) protein participates in the DNA damage response in many cell types. Germline mutations in CHK2 (1100delC, IVS2 + 1G>A and I157T) have been associated with a range of cancer types. This study aimed to investigate whether CHK2 1100delC, IVS2 + 1G>A and I157T mutations play an important role in the development of hepatocellular carcinoma (HCC) in a Turkish population.

Methods

A total of 165 hepatocellular cancer cases and 446 cancer-free controls were genotyped for CHK2 mutations by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele specific-polymerase chain reaction (AS-PCR) methods.

Results

We did not find CHK2 1100delC, IVS2 + 1G>A and I157T mutations in any of 611 Turkish subjects.

Conclusion

Our results demonstrate for the first time that CHK2 1100delC, IVS2 + 1G>A and I157T mutations have not been a genetic susceptibility factor for HCC in the Turkish population. Overall, our data suggests that genotyping of CHK2 mutations in clinical settings in the Turkish population should not be recommended. Independent studies are needed to validate our findings in a larger series, as well as in patients of different ethnic origins.  相似文献   

20.
Autosomal recessive polycystic kidney disease (ARPKD) is a rare hereditary renal cystic disease involving multiple organs, mainly the kidney and liver. Parents who had an affected child with ARPKD are in strong demand for an early and reliable prenatal diagnosis to guide the future pregnancies. Here we provide an example of prenatal diagnosis of an ARPKD family where traditional antenatal ultrasound examinations failed to produce conclusive results till 26th week of gestation. Compound heterozygous mutations c.274C>T (p.Arg92Trp) and c.9059T>C (p.Leu3020Pro) were identified using targeted exome sequencing in the patient and confirmed by Sanger sequencing. Further, the mother and father were revealed to be carriers of heterozygous c.274C>T and c.9059T>C mutations, respectively. Molecular prenatal diagnosis was performed for the current pregnancy by direct sequencing plus linkage analysis. Two mutations identified in the patient were both found in the fetus. In conclusion, compound heterozygous PKHD1 mutations were elucidated to be the molecular basis of the patient with ARPKD. The newly identified c.9059T>C mutation in the patient expands mutation spectrum in PKHD1 gene. For those ultrasound failed to provide clear diagnosis, we propose the new prenatal diagnosis procedure: first, screening underlying mutations in PKHD1 gene in the proband by targeted exome sequencing; then detecting causative mutations by direct sequencing in the fetal DNA and confirming results by linkage analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号