首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The growth response of a double-mutant fatty acid auxotroph of yeast Saccharomyces cerevisiae to exogenous saturated fatty acids of a homologous series from 12:0 to 16:0, each supplied with oleate, linoleate, linolenate, or cis11- eicosenoate, cannot be explained in terms of the efficiency of incorporation of the fatty acids into phospholipids or alteration of membrane fluidity. There is, however, a negative correlation between growth and levels of 12:0 plus 13:0 in phospholipids, as well as a positive correlation between growth and levels of 14:0, 1 5:0, and 1 6:0. We, therefore, conclude that the predominant factor in these phospholipid fatty acyl chain modifications is maintenance of an optimal concentration of C14:0 through C16:0 in phospholipids of this organism.  相似文献   

2.
Temperature-dependent compositional changes of phospholipids and their fatty acids were analysed in Yersinia enterocolitica grown at 5°, 25° and 37°C. The relative amounts of the four phospholipids, phosphatidylethanolamine (75–78%), phosphatidylglycerol (10–11%), cardiolipin (<7%) and lysophosphatidylethanolamine (<5%), were essentially the same at all growth temperatures. The degree of fatty acid unsaturation of the four phospholipids increased with decrease in growth temperature, mainly due to an increase of C16:1 and C18:1 and a corresponding decrease of C16;0, C18:0 and cyclo C17:0. An electron spin resonance spectroscopic study of the membrane lipids showed that membrane lipid fluidity was enhanced by decreasing the growth temperatures. The changes in fatty acid composition of phospholipids in response to varied temperatures were consistent with the temperature-dependent changes in the membrane lipid fluidity of Y. enterocolitica , and were similar to those reported for other bacteria.  相似文献   

3.
4.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

5.
The objective of this study was to investigate if maternal dietary 20:4n-6 arachidonic acid (AA) and 22:6n-3 compared with adequate or low levels of 18:3n-3 linolenic acid (LNA) increases synaptic plasma membrane (SPM) cholesterol and phospholipid content, phospholipid 20:4n-6 and 22:6n-3 content, and Na,K-ATPase kinetics in rat pups at two and five weeks of age. At parturition, Sprague-Dawley rats were fed semi-purified diets containing either AA + docosahexaenoic acid (DHA), adequate LNA (control; 18:2n-6 : 18:3n-3 ratio of 7.1 : 1) or low LNA (18:2n-6 : 18:3n-39 ratio of 835 : 1). During the first two weeks of life, the rat pups received only their dams' milk. After weaning, pups received the same diet as their respective dams to five weeks of age. No significant difference was observed among rat pups fed the diet treatments for SPM cholesterol or total and individual phospholipid content at two and five weeks of age. Fatty acid analysis revealed that maternal dietary AA + DHA, compared with feeding the dams the control diet or the low LNA diet, increased 20:4n-6 in phosphatidylserine and 22:6n-3 content of SPM phospholipids. Rats fed dietary AA + DHA or the control diet exhibited a significantly increased Vmax for SPM Na,K-ATPase. Diet treatment did not alter the Km (affinity) of SPM Na,K-ATPase in rat pups at two and five weeks of age. It is concluded that dietary AA + DHA does not alter SPM cholesterol and phospholipid content but increases the 22:6n-3 content of SPM phospholipids modulating activity of Na,K-ATPase.  相似文献   

6.
The objective of these studies with rat hepatocytes in primary culture was to establish that: (a) membrane phospholipids would become enriched with the specific fatty acid supplemented to the media and (b) hepatocyte monolayer triacylglycerol synthetic rates were dependent on the type of fatty acid enrichment of the membrane phospholipids. Hepatocytes cultured in the absence of media lipid developed a phospholipid fatty acid composition which is indicative of an essential fatty acid deficiency. The extensive rise in 18:1(n - 9) content indicated that delta 9-desaturase was active. The fatty acid composition of phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol in the microsomal- and mitochondrial-enriched fractions was highly dependent upon the type of fatty acid supplemented to the medium. Incorporation of fatty acids into phospholipids was rapid, and a new steady-state in fatty acid composition was achieved within approx. 36 h. Changes in the fatty acid composition of these hepatocyte phospholipid subclasses resulting from media supplementation with 18:2/20:4(n-6) or 20:5(n-3) were similar, but not identical, to changes which occurred in vivo as a result of consuming diets rich in 18:2(n-6) or 20:5(n-3). Hepatocyte lipogenesis was highly dependent upon the type of fatty acid supplemented to the medium. Prior conditioning with 16:0 increased triacylglycerol synthesis and secretion. Secretion of triacylglycerol was reduced by polyenoic fatty acid enrichment with 20:5(n-3) greater than 20:4/18:2(n-6). The suppression of triacylglycerol synthesis by 20:5(n-3) was due to an increased (P less than 0.05) diacylglycerol specific activity, which indicates that 20:5(n-3) suppression of hepatic triacylglycerol production may be caused in part by the inhibition of diacylglycerol acyltransferase.  相似文献   

7.
AIM: We sought to confirm the presence of halophilic and alkaliphilic lactic acid bacteria (HALAB) of marine origin in cheeses and thus contribute to the understanding of the roles of LAB flora in cheese ripening. METHODS AND RESULTS: We used 7% NaCl glucose-yeast extract-peptone-fish extract broth and agar media (pH 9.5) for pour-plating and enrichment culture for 16 cheese samples produced in six European countries. HALAB were present in 9 of the 16 samples at < 20 --> 10(7) CFU g(-1). In three mould-ripened soft cheeses, HALAB counts ranged from 10(6) to 10(7) CFU g(-1) and were one order (two samples) and six orders (one sample) of magnitude greater than that of nonhaloalkaliphilic, common LAB, as enumerated on lactobacilli MRS agar. The 16S rRNA gene sequences (500 bp) of 51 of the 55 isolates examined were identical or similar to that of Marinilactibacillus psychrotolerans or Alkalibacterium olivapovliticus and related species, all of which are HALAB. CONCLUSIONS: HALAB of possible marine origin were present in various soft, semi-hard and semi-soft cheeses and were highly predominant in some mould-ripened cheeses. Significance AND IMPACT OF THE STUDY: HALAB of possible marine origin are members of the microflora of various cheeses and, when dominant, may play a role in the ripening of cheeses. Microbial analysis of LAB flora in cheeses should take into consideration the presence of HALAB.  相似文献   

8.
Extremophiles - Neutrophilic Shewanella violacea is isolated from deep-sea sediments and its response to high pressure and high salinity has been investigated. Here, the pure effects of acidic pH...  相似文献   

9.
Strain variation in the acidophile Acidithiobacillus ferrooxidans was examined as a product of membrane adaptation in response to pH stress. We tested the effects of sub and supra-optimal pH in two type strains and four strains isolated from acid mine drainage water around Sudbury, Ontario, Canada. Growth rate, membrane fluidity and phase, determined from the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, and fatty acid profiles were compared. The effect of pH 1.5 was the most pronounced compared to the other pH values of 1.8, 3.1, and 3.5. Three different types of response to lower pH were observed, the first of which appeared to maintain cellular homeostasis more effectively. This adaptive mode included a decrease in membrane fluidity and concomitant depression of the phase transition in two distinct membrane lipid components. This was explained through the increase in saturated fatty acids (predominantly 16:0 and cyclopropane 19:0 w8c) with a concomitant decrease in 18:1 w7c fatty acid. The other strains also showed common adaptive mechanisms of specific fatty acid remodeling increasing the abundance of short-chain fatty acids. However, we suspect membrane permeability was compromised due to potential phase separation, which may interfere with energy transduction and viability at pH 1.5. We demonstrate that membrane physiology permits differentiating pH tolerance in strains of this extreme acidophile.  相似文献   

10.
Scanning electron microscopic observation revealed that there were wide variations including typical acanthocytes in morphology of erythrocytes from a patient with abetalipoproteinemia. The erythrocyte membrane phospholipids and cholesterol contents from a patient was higher by 25% compared to an age-matched control subject. Analysis of phospholipid composition of red blood cells showed an increase of sphingomyelin (25.1----30.1%) with a concomitant decrease of lecithin (27.5----21.0%). Thus, the sphingomyelin/lecithin ratio was increased dramatically (0.91----1.43). As for fatty acyl chain composition of main phospholipids, an increased percentage of palmitic acid and docosahexaenoic acid and a decreased proportion of arachidonic acid and lignoceric acid were observed for sphingomyelin. There was an increment of palmitic acid which was accompanied with a decrease of linoleic acid in lecithin. On the other hand, no significant difference was shown in the fatty acid composition of phosphatidylethanolamine and phosphatidylserine plus phosphatidylinositol between a patient and control.  相似文献   

11.
Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice.  相似文献   

12.
Alpaslan  M.  Gunes  A. 《Plant and Soil》2001,236(1):123-128
A greenhouse study was conducted in order to determine interactive effects of NaCl salinity and B on the growth, sodium (Na), chloride (Cl), boron (B), potassium (K) concentrations and membrane permeability of salt resistant Tomato (Lycopersicon esculentum L. cv. Lale F1) and salt sensitive cucumber (Cucumis sativus L. cv. Santana F1) plants. Plants were grown in a factorial combination of NaCl (0 and 30 mM for cucumber and 0 and 40 mM for tomato) and B (0, 5, 10 and 20 mg kg–1 soil). Boron toxicity symptoms appeared at 5 mg kg–1 B treatments in both plants. Salinity caused an increase in leaf injury due to B toxicity, but it was more severe in cucumber. Dry weights of the plants decreased with the increasing levels of applied B in nonsaline conditions, but the decrease in dry weights due to B toxicity was more pronounced in saline conditions especially in cucumber. Salinity × B interaction on the concentration of B in both plants was found significant. However, increase in B concentrations of tomato decreased under saline conditions when compared to nonsaline conditions. Contrary to this, B concentration of cucumber increased as a result of increasing levels of applied B and salinity. Salinity increased Na and Cl concentrations of both plants.Potassium concentration of tomato was not affected by salinity and B treatments, but K concentration of cucumber was decreased by salinity. Membrane permeability of the plants was increased by salinity while toxic levels of B had no effect on membrane permeability in nonsaline conditions. Membrane permeability was significantly increased in the presence of salinity by the increasing levels of applied B.  相似文献   

13.
The influence of salinity on the growth, gross chemical composition and fatty acid composition of three species of marine microalgae,Isochrysis sp.,Nannochloropsis oculata andNitzschia (frustulum), was investigated. There was no significant change in growth rate ofIsochrysis sp. andN. (frustulum) over the experimental range of salinity (10–35 ppt), whileN. oculata had a significantly slower growth rate only at 35 ppt. The ash content of all three species increased with increasing salinity. Two species,Isochrysis sp. andN. oculata, showed significant linear increases in total lipid content with increasing salinity over the range 10 to 35 ppt.N. (frustulum) showed significant linear decrease in total lipids, with the highest percentage at low salinity within the range 10–15 ppt. Variation in salinity had only a slight effect on the total protein, the soluble carbohydrate and chlorophylla content of all species. All species responded to change in salinity by modifying their cellular fatty acid compositions. Significant positive correlations were observed between increase in salinity and increase in the percentage ofcis-9-hexadecenoic acid [16:1 (n-7)] over the entire experimental range inN. (frustulum) and between 25–35 ppt inN. oculata. There were curved relationships between salinity and percentage of hexadecanoic acid [16:0] inN. oculata andN. (frustulum), with maxima within the range 25–30 ppt for both species. A curved relationship was found between salinity and percentage of eicosapentaenoic acid [20–5(n-3)], forN. (frustulum), with lowest percentages of the fatty acid within the range 25–30 ppt. There was no consistent pattern in the percentages of other major fatty acids as functions of salinity. The Northern Territory isolateN. (frustulum) was unusual in having a substantial increase in total fatty acids with decreasing salinity (85 mg g–1 dry wt at 10 ppt compared with 33 mg g–1 at 35 ppt). The optimum salinities for the production of maximum amount of lipids and the essential fatty acids 20:5(n-3) and/or 22:6(n-3) were as follows:25 ppt forIsochrysis sp. [22:6(n-3)]; 20–30 ppt forN. oculata [20:5(n-3)]; 10–15 ppt forN. (frustulum) [20:5(n-3) and 22:6(n-3)].Author for correspondence  相似文献   

14.
Vesicles composed of phospholipids with different fatty acyl side chains have been utilized to examine the importance of the nonpolar membrane region for the prothrombin-converting activity of procoagulant phospholipid vesicles. Membranes composed of phosphatidylserine (PS) and phosphatidylcholine (PC) with unsaturated fatty acyl side chains were more active in prothrombin activation than membranes composed of phospholipids with saturated fatty acyl chains. This phenomenon was observed above the phase transition temperature, i.e., on membranes in the liquid-crystalline state. The prothrombin-converting activity of saturated phospholipids approached the activity of unsaturated phospholipids at high factor Va concentrations, which is indicative for a less favorable equilibrium constant for prothrombinase assembly on membrane surfaces composed of saturated phospholipids. The difference between saturated and unsaturated phospholipids was annulled on membranes with high mole percentages of PS. This may result from a compensating contribution of electrostatic forces to the binding equilibria involved in prothrombinase assembly. Additional effects on the prothrombin-converting activity were observed when membranes containing saturated phospholipids were studied below their phase transition temperature. In agreement with Higgins et al. [(1985) J. Biol. Chem. 260, 3604-3612], we found that the time required for the assembly of prothrombinase from membrane-bound factors Xa and Va is considerably prolonged on solid membranes. However, we also observed an effect of membrane fluidity on the steady-state rate of prothrombin activation. Kinetic experiments at saturating factor Va concentrations showed that the transition from the liquid-crystalline to the gel state caused a more than 9-fold decrease of the kcat of prothrombin activation without affecting the Km for prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
李宗军 《微生物学报》2005,45(3):426-430
通过对大肠杆菌生长温度、膜脂肪酸组成和压力抗性之间关系研究发现,10℃培养,对数期细胞有最大的压力抗性,随着培养温度的升高直到4 5℃,压力抗性呈下降的趋势;相反,10℃培养,稳定期的细胞对压力最敏感,随着培养温度的升高,压力抗性呈增加趋势,30~37℃时达到最大,之后到4 5℃有下降。对数期和稳定期细胞膜脂中不饱和脂肪酸的组成随温度的上升而下降,这与从全细胞中抽提的磷脂的熔点密切相关。因此,对数期细胞压力抗性随着膜流动性的增大而升高;但稳定期细胞,膜流动性与压力抗性之间不存在简单的对应变化关系  相似文献   

16.
Abstract In this study the fatty acid composition of Flavobacterium halmephilum CCM2831 grown at different temperatures and salt concentrations is reported. At elevated growth temperatures the amount of cellular saturated long-chain acids (C18:0 and C20:0) and the branched-chain acid br-C17:0 increased, and the concentrations of both cyclic acids and the branched chain acid br-C15:0 decreased. Increasing the salt concentration in the medium resulted in a gradual increase in cellular cyclopropanoic acids and a concomitant decrease in the monounsaturated fatty acid content.  相似文献   

17.
Salt adaptation in chemolithotrophic alkaliphilic sulfur-oxidizing strains belonging to genera Thioalkalimicrobium and Thioalkalivibrio has been studied by determination of salt-dependent changes in fatty acid and compatible solute composition. In both alkaliphilic groups, represented by the low salt-tolerant Thioalkalimicrobium aerophilum strain AL 3T and the extremely salt-tolerant Thioalkalivibrio versutus strain ALJ 15, unsaturated fatty acids predominate over saturated fatty acids. In strain AL 3T, C18:1, C16:0 and C16:1 were the dominant fatty acids. In strain ALJ 15, the concentrations of C18:1 and C19cyclo were salt-regulated in an inverse proportional relationship, suggesting the stimulation of cyclopropyl-synthetase activity. Squalene has been found in substantial amounts only in strain ALJ 15. Ectoine and glycine betaine were found to be the main osmolytes in Thioalkalimicrobium aerophilum and Thioalkalivibrio versutus, respectively. The production of ectoine and glycine betaine was positively correlated with the salt concentration in the growth medium. A novel type of membrane-bound yellow pigments was uniformly detected in the extremely salt-tolerant strains of Thioalkalivibrio with a backbone consisting of C15-polyene, whose specific concentration correlated with increasing salinity of the growth medium. The results suggest that the mechanisms of haloalkaliphilic adaptation in Thioalkalimicrobium sp. and Thioalkalivibrio sp. involve the production of cyclopropane fatty acids, organic compatible solutes and, possibly specific pigments.  相似文献   

18.
19.
In this study, we examined the lipid composition of rat caecal mucosa, including the fatty acid composition of major phospholipid classes. Phospholipids accounted for 90% of the total lipid, with cholesterol, triacylglycerols, diacylglycerols, fatty acids and cholesterol ester making up the remainder. Therefore, a phospholipid to neutral lipid ration of 9:1 was found. Phosphatidylethanolamine was the predominant phospholipid, with phosphatidylcholine as the second most abundant phospholipid. Cardiolipin, phosphatidylserine, phosphatidylinositol and lysophosphatidylcholine were present in lesser amounts. Sphingomyelin and lysophosphatidylethanolamine were only detected in trace amounts. The major fatty acids present in both the lipid and all phospholipid fractions were palmitate, stearate, oleate, linoleate and arachidonate. Other fatty acids of chain length greater than C20 were only detected in phospholipid fraction and accounted for < 5% of the total fatty acids in this fraction. However, 11.10% of 22:6 (n-3) and 7.17% of 24:0 were detected in phosphatidylserine and lysophosphatidylcholine, respectively. The results are discussed in terms of their possible physiological significance.  相似文献   

20.
Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25±1°C, 50% relative humidity and heat acclimation: 32±0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, P<0.01) and noradrenaline-stimulated maximum values of oxygen consumption (r=0.5, P<0.05). Our results show that heat acclimation modifies the BAT phospholipid fatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression. Received: 9 August 1999 / Revised: 8 November 1999 / Accepted: 24 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号