首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-hydrolysable analogues of phosphatidylinositol were synthesized and tested as inhibitors of phosphatidylinositol-specific phospholipase C from Bacillus cereus. In these molecules, the phosphodiester bond of phosphatidylinositol hydrolyzed by the phospholipase was replaced by a phosphonate linkage and a simpler hydrophobic group replaced the diacylglycerol moiety. One of the phosphonates also contained a carboxylate functional group suitable for matrix attachment. All three synthetic phosphonates inhibited the phospholipase C activity in a concentration-dependent manner, with the analogue most closely resembling the structure of the natural substrate, phosphatidylinositol, being the most potent inhibitor. The data indicate that phosphonate analogues of phosphatidylinositol may be useful for study of phospholipase C and other proteins interacting with myo-inositol phospholipids.  相似文献   

2.
Our earlier studies demonstrated that high-density lipoproteins (HDLs) stimulate multiple signaling pathways, including activation of phosphatidylcholine-specific phospholipases C and D (PC-PLs) and phosphatidylinositol-specific phospholipase C (PI-PLC). However, only activation of PC-PLs was linked to the HDL-induced cholesterol efflux. In the study presented here, the role of HDL-induced PI-PLC activation was studied. In human skin fibroblasts, HDL potently induced PI-PLC as inferred from enhanced phosphatidylinositol bisphosphate (PtdInsP(2)) turnover and Ca(2+) mobilization. The major protein component of HDL, apo A-I, did not induce PtdInsP(2) turnover or Ca(2+) mobilization in these cells. Both HDL and apo A-I promoted cellular cholesterol efflux, whereas only HDL induced fibroblast proliferation. Inhibition of PI-PLC with U73122 or blocking intracellular Ca(2+) elevation with Ni(2+) or EGTA markedly reduced the extent of HDL-induced cell proliferation but had no effect on cholesterol efflux. In fibroblasts from patients with Tangier disease which are characterized by defective cholesterol efflux, neither HDL-induced PtdInsP(2) breakdown and Ca(2+) mobilization nor cell proliferation was impaired. HDL-induced fibroblast proliferation, PtdInsP(2) turnover, and Ca(2+) mobilization were fully mimicked by the lipid fraction isolated from HDL. Analysis of this fraction with high-performance liquid chromatography (HPLC) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) revealed that the PI-PLC-inducing activity is identical with two bioactive lysosphingolipids, namely, lysosulfatide (LSF) and sphingosylphosphorylcholine (SPC). Like native HDL, LSF and SPC induced PtdInsP(2) turnover, Ca(2+) mobilization, and fibroblast proliferation. However, both compounds did not promote cholesterol efflux. In conclusion, two agonist activities are carried by HDL. Apo A-I stimulates phosphatidylcholine breakdown and thereby facilitates cholesterol efflux, whereas LSF and SPC trigger PI-PLC activation and thereby stimulate cell proliferation.  相似文献   

3.
4.
The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on l-leucyl-β-naphthylamidase, alkaline phosphodiesterase I and Ca2+- or Mg2+-ATPase, but substantial proportions of the alkaline phosphatase and 5′-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not excluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.  相似文献   

5.
The properties of acetylcholinesterase solubilized from bovine erythrocyte membrane by phosphatidylinositol (PI)-specific phospholipase C of Bacillus thuringiensis or with a detergent, Lubrol-PX, were studied. The activity of Lubrol-PX-solubilized acetylcholinesterase was broadly distributed in the fractions having Ve/Vo = 1.0-2.0 in gel filtration on a Sepharose 6B column. The intermediary fractions (Ve/Vo = 1.3-1.7) were collected as "the middle active Sepharose 6B eluate" and characterized on the basis of enzymology and protein chemistry. When this eluate was treated with PI-specific phospholipase C, the major activity peak was obtained in the later fractions with Ve/Vo = 1.75-2.0 on the same column chromatography. Lubrol-solubilized and phospholipase C-treated acetylcholinesterase preparations were different in the thermostability, the elution profiles of chromatography on Mono Q, butyl-Toyopearl and phenyl-Sepharose columns, and the affinity to phospholipid micelles. On treatment with PI-specific phospholipase C, Lubrol-solubilized acetylcholinesterase became more thermostable. The phospholipase C-treated enzyme was eluted at lower NaCl concentration from the Mono Q column than the Lubrol-solubilized enzyme. The most important difference was observed in the hydrophobicity of these two enzyme preparations. The Lubrol-solubilized enzyme shows high affinity to phospholipid micelles and hydrophobic adsorbents such as butyl-Toyopearl and phenyl-Sepharose. However, this hydrophobicity was lost when acetylcholinesterase was solubilized from bovine erythrocyte membrane by PI-specific phospholipase C. The presence of myo-inositol was confirmed in the purified preparation of acetylcholinesterase by gas chromatography (GC)-mass spectrometry (MS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ectoenzyme release from rat liver and kidney by phosphatidylinositol (PI)-specific phospholipase C of Bacillus thuringiensis was studied. Alkaline phosphatase and 5'-nucleotidase were released from rat kidney slices to extents of up to 60% and 30%, respectively. Release of alkaline phosphatase was observed at lower amounts of PI-specific phospholipase C than that of 5'-nucleotidase. Both enzymes were more easily released from microsomal fractions or free cells. From kidney cells, alkaline phosphatase was released without cell lysis, and more than 80% release of alkaline phosphatase was observed at 3.8% hydrolysis of PI. Isoelectric focusing profiles of alkaline phosphatase released by PI-specific phospholipase C were significantly different from the control in the cases of both rat liver and kidney. Lubrol-solubilized alkaline phosphatase was eluted at the void volume of a Toyopearl HW-55 column, while the enzyme obtained by further treatment with PI-specific phospholipase C was eluted in the lower-molecular-weight region corresponding to 100,000-110,000 daltons. Furthermore, Lubrol-solubilized phosphatase became more thermostable on treatment with PI-specific phospholipase C.  相似文献   

7.
Phosphatidylinositol-specific phospholipase C (PI-PLC) cleaves phosphoinositides into two parts, lipid-soluble diacylglycerol and the water-soluble phosphorylated inositol. Two crystal forms of Bacillus cereus PI-PLC have been obtained by the vapor diffusion technique. Hexagonal crystals were grown from solutions containing polyethylene glycol (PEG; 4,000 to 8,000 D). The space group of these hexagonal crystals is P6(1)22 (or the enantiomorphic space group P6(5)22), with cell constants a = b = 133 A, and c = 231 A. The crystals diffract to 2.8 A. The second crystalline form was grown from a two-phase PEG (600 D)-sodium citrate solution. The phase diagram and PI-PLC distribution between phases has been determined. The enzyme crystallizes from the PEG-rich phase. The crystals are orthorhombic with space group P2(1)2(1)2(1) (a = 45 A, b = 46 A, c = 160 A), and contain one PI-PLC monomer per asymmetric unit. The orthorhombic crystals diffract to 2.5 A. Both the hexagonal and orthorhombic forms are suitable for crystallographic studies.  相似文献   

8.
We investigated the effect of thyroid hormone on phosphatidylinositol-specific phospholipase C activity in rat liver. Thyroidectomy increased the activity of the enzyme. Thyroid hormone (T4, 40 micrograms) administration to thyroidectomized-rats decreased phospholipase C activity. The inhibition induced by thyroid hormone was of a non-competitive type. The higher concentration of Ca2+ strongly inhibited the activity of the enzyme obtained from thyroidectomized-rats' liver in vitro. The diminished activity of the enzyme obtained from thyroxine-treated-thyroidectomized-rats was recovered by pretreatment of the enzyme with EGTA. The activity of the enzyme derived from thyroidectomized-rats was not affected by EGTA treatment. These results suggest that thyroid hormone decreases the activity of phosphatidylinositol-specific phospholipase C activity through the mobilization of Ca2+ in the intracellular space.  相似文献   

9.
The interactions of PI-PLC with nonsubstrate zwitterionic [phosphatidylcholine (PC)] and anionic [phosphatidylmethanol (PMe), phosphatidylserine, phosphatidylglycerol, and phosphatidic acid] interfaces that affect the catalytic activity of PI-PLC have been examined. PI-PLC binding is strongly coupled to vesicle curvature and is tighter at acidic pH for all of the phospholipids examined. PI-PLC binds to small unilamellar vesicles (SUVs) of anionic lipids with much higher affinity (K(d) is 0.01-0.07 microM for a site consisting of n = 100 +/- 25 lipids when analyzed with a Langmuir adsorption isotherm) than to zwitterionic PC SUVs (K(d) is 5-20 microM and n = 8 +/- 3). The binding to PC surfaces is dominated by hydrophobic interactions, while binding to anionic surfaces is dominated by electrostatic interactions. The contributions of specific cationic side chains and hydrophobic groups at the rim of the alpha beta-barrel to zwitterionic and anionic vesicle binding have been assessed with mutagenesis. The results are used to explain how PC activates the enzyme for both phosphotransferase and cyclic phosphodiesterase activities.  相似文献   

10.
The crystal structure of the W47A/W242A mutant of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis has been solved to 1.8A resolution. The W47A/W242A mutant is an interfacially challenged enzyme, and it has been proposed that one or both tryptophan side chains serve as membrane interfacial anchors (Feng, J., Wehbi, H., and Roberts, M. F. (2002) J. Biol. Chem. 277, 19867-19875). The crystal structure supports this hypothesis. Relative to the crystal structure of the closely related (97% identity) wild-type PI-PLC from Bacillus cereus, significant conformational differences occur at the membrane-binding interfacial region rather than the active site. The Trp --> Ala mutations not only remove the membrane-partitioning aromatic side chains but also perturb the conformations of the so-called helix B and rim loop regions, both of which are implicated in interfacial binding. The crystal structure also reveals a homodimer, the first such observation for a bacterial PI-PLC, with pseudo-2-fold symmetry. The symmetric dimer interface is stabilized by hydrophobic and hydrogen-bonding interactions, contributed primarily by a central swath of aromatic residues arranged in a quasiherringbone pattern. Evidence that interfacially active wild-type PI-PLC enzymes may dimerize in the presence of phosphatidylcholine vesicles is provided by fluorescence quenching of PI-PLC mutants with pyrene-labeled cysteine residues. The combined data suggest that wild-type PI-PLC can form similar homodimers, anchored to the interface by the tryptophan and neighboring membrane-partitioning residues.  相似文献   

11.
Purified phosphatidylinositol-specific phospholipase C from Staphylococcus aureus released a substantial proportion of the total alkaline phosphatase activity from a wide range of tissues from several mammalian species. Co-purification of the phospholipase C and alkaline phosphatase-releasing activities and the inhibition of both these activities by iso-osmotic salt solutions suggested that the releasing effect was unlikely to be due to a contaminant.  相似文献   

12.
Carboxypeptidase M (CPM), a glycosylphosphatidylinositol (GPI)-anchored membrane protein, remained at a constant level in confluent Madin Darby canine kidney (MDCK) cells but was continually released into the medium in soluble form. The released CPM contained ethanolamine, indicating liberation by a phospholipase. Treatment of MDCK cells with 0.01 U/ml phosphatidylinositol-specific phospholipase C for 6 h led to a 5.5-fold increase in soluble CPM, yet the activity in cells remained constant, resulting in a 30% increase in total activity. The increase was due to new protein synthesis as evidenced by inhibition with 0.2 microM cycloheximide and a 63% increase in [35S]methionine incorporation into newly synthesized CPM. MDCK cells treated with 1-alkyl-2-acyl-glycerol, the diglyceride component of mammalian glycosylphosphatidylinositol anchors, exhibited a 36% increase in CPM activity, but diacylglycerols or phorbol esters were ineffective. Thus, release of GPI-anchored CPM can generate a diglyceride signal to replenish and maintain constant levels on the cell surface.  相似文献   

13.
The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on L-leucyl-beta-naphthylamidase, alkaline phosphodeisterase I and Ca2+- or MG2+-ATPase, but substantial proportions of the alkaline phosphatase and 5-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not exluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.  相似文献   

14.
The phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis exhibits several types of interfacial activation. In the crystal structure of the closely related Bacillus cereus PI-PLC, the rim of the active site is flanked by a short helix B and a loop that show an unusual clustering of hydrophobic amino acids. Two of the seven tryptophans in PI-PLC are among the exposed residues. To test the importance of these residues in substrate and activator binding, we prepared several mutants of Trp-47 (in helix B) and Trp-242 (in the loop). Two other tryptophans, Trp-178 and Trp-280, which are not near the rim, were mutated as controls. Kinetic (both phosphotransferase and cyclic phosphodiesterase activities), fluorescence, and vesicle binding analyses showed that both Trp-47 and Trp-242 residues are important for the enzyme to bind to interfaces, both activating zwitterionic and substrate anionic surfaces. Partitioning of the enzyme to vesicles is decreased more than 10-fold for either W47A or W242A, and removal of both tryptophans (W47A/W242A) yields enzyme with virtually no affinity for phospholipid surfaces. Replacement of either tryptophan with phenylalanine or isoleucine has moderate effects on enzyme affinity for surfaces but yields a fully active enzyme. These results are used to describe how the enzyme is activated by interfaces.  相似文献   

15.
It has been hypothesized on the basis of studies on BC3H-1 myocytes that diacylglycerol generation with activation of protein kinase C (PKC) is involved in the stimulation of glucose transport in muscle by insulin (Standaert, M. L., Farese, R. V., Cooper, R. D., and Pollet, R. J. (1988) J. Biol. Chem. 263, 8696-8705). In the present study, we used the rat epitrochlearis muscle to evaluate the possibility that PKC activity mediates the stimulation of glucose transport by insulin in mammalian skeletal muscle. Phospholipase C from Clostridium perfringens (PLC-Cp), which generates diacylglycerol from membrane phospholipids, and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) induced increases in glucose transport activity (assessed using 3-O-methylglucose transport) that were approximately 80 and approximately 20% as great, respectively, as that induced by a maximal insulin stimulus. PLC-Cp and PMA both caused a approximately 2-fold increase in membrane-associated PKC activity. In contrast, insulin did not affect PKC activity. These findings argue against a role of diacylglycerol-mediated PKC activation in the stimulation of skeletal muscle glucose transport by insulin. They also show that the BC3H-1 myocyte is not a good model for studying regulation of glucose transport in skeletal muscle. Neither the submaximal nor maximal effects of PLC-Cp and insulin on glucose transport were additive, suggesting that PLC-Cp interferes with insulin action. The maximal effects of PLC-Cp and hypoxia or muscle contractions were also not additive. However, the submaximal effects of hypoxia and PLC-Cp were completely additive. These findings raise the possibility that PLC-Cp stimulates glucose transport by the exercise/hypoxia-activated, not the insulin-activated, pathway in skeletal muscle. Exposure to PLC-Cp activated glycogen phosphorylase and potentiated twitch tension in response to electrical stimulation, providing evidence that PLC-Cp increases cytoplasmic Ca2+ concentration. Dantrolene, an inhibitor of Ca2+ release from the sarcoplasmic reticulum, completely blocked both the activation of phosphorylase and the stimulation of glucose transport by PLC-Cp. These findings provide evidence that an increase in cytoplasmic Ca2+ concentration is involved in the activation of glucose transport in skeletal muscle by PLC-Cp.  相似文献   

16.
Phosphatidylinositol-specific phospholipase C was purified to homogeneity from soluble fraction of bovine platelets by ammonium sulfate fractionation, hydrophobic chromatography, DEAE ion exchange chromatography and gel filtration. The purified enzyme has a narrow pH optimum ranging from 6.5 to 7.5 and the molecular weight of the enzyme was estimated to be 143,000 by sodium dodecyl sulfate slab gel electrophoresis. The purified enzyme requires Ca2+ strictly for activity, which was markedly enhanced in the presence of arachidonate. No enhancement of the activity was observed in the presence of purified calmodulin. The activity was markedly inhibited in the presence of quinacrine but no inhibition by indomethacin was observed.  相似文献   

17.
1. The distribution of phosphatidylinositol3, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate hydrolysis or phosphatidylinositol-specific phospholipase C (PI-PLC), activity in the bull reproductive system showed the highest specific activity in the isolated spermatozoa (SZ) followed by testis and different epididymal segments. Both the head and tail fractions of SZ were active. 2. The optimal solubilization of the enzyme from SZ was obtained with 0.2% Triton X-100 or at 0.05% detergent concentration when combined with a 60 sec sonication. The sucrose gradient centrifugation showed that PI-PLC was enriched in membrane fraction distinct from mitochondria and acrosomes. 3. The enzyme was purified by ammonium sulphate precipitation and fractionations by hydrophobic interaction chromatography, gel filtration, Con A-Sepharose affinity and chromatofocusing columns. The purified enzyme was able to hydrolyse all phosphatidylinositol substrates with optimum at pH 7.0 and activation by Ca2+, Cd2+ and Mn2+ but not phospholipids lacking the inositol residue. 4. In PAGE (8-25% gradient) the purified (aggregated) enzyme did not enter the gel. In SDS-PAGE two closely located bands were found with Mr-values of 15,000 and 18,000. Isoelectric focusing showed a wide band at pl 4.5-5.1. 5. Gel filtration resulted in a broad elution peak indicating multiple molecular forms (aggregates); the basic form had an apparent molecular weight of 100,000. The binding of the enzyme to Con A-Sepharose indicated that the enzyme is a glycoprotein.  相似文献   

18.
In a previous paper (Rath, H. M., Doyle, G. A. R., and Silbert, D. F. (1989) J. Biol. Chem. 264, 13387-13390), we reported a selection for the isolation of Chinese hamster lung fibroblasts (CCL39) defective in thrombin-induced mitogenesis. One mutant, D1-6b, had decreased production of inositol phosphates when challenged with activators of phosphatidylinositol turnover and extracts of this mutant showed a marked decrease in phospholipase C (PLC) activity toward phosphatidylinositol. In the current studies, the PLC activities of wild type CCL39 and D1-6b cytosolic extracts are further characterized. Wild type cytosol had at least two phosphatidylinositol-specific PLC isoenzymes, which could be separated by anion exchange chromatography and behaved differently in thermal inactivation studies. Since gel filtration of PLC activity in wild type extracts gave Mr values similar to that of previously characterized PLCs (140,000-200,000), immunoblots with antibodies to bovine brain isoenzymes were used to show that the PLC activities obtained by anion exchange chromatography were PLC-delta and PLC-gamma. Immunoblots with mutant D1-6b cytosol confirmed the presence of the PLC-gamma but showed no detectable PLC-delta. This activity in the mutant extracts eluted at the same conductivity on anion exchange columns and had the same kinetics of thermal inactivation as the PLC-gamma found in the wild type extracts. PLC-gamma from mutant extracts was active in assays containing phospholipid detergent mixed micelles but not in assays utilizing phospholipid vesicles, in sharp contrast to PLC-gamma from CCL39 extracts, which was active under either condition. Thus, the phosphatidylinositol-specific phospholipase C activity of mutant D1-6b is diminished both by the loss of PLC-delta and by the compromised behavior of PLC-gamma.  相似文献   

19.
Villar AV  Goñi FM  Alonso A 《FEBS letters》2001,494(1-2):117-120
Diacylglycerol increased the hydrolytic activity of phosphatidylinositol-specific phospholipase C on large unilamellar vesicles containing 5-40% phosphatidylinositol. Moreover, diacylglycerol increased the rate and extent of vesicle fusion (contents mixing) induced by the enzyme. Kinetic studies of intervesicular lipid mixing revealed that fusion was limited by the frequency of contacts involving two diacylglycerol-rich domains.  相似文献   

20.
NAD+ glycohydrolase (NADase) present on the surface of rabbit erythrocytes is a membrane-bound ectoenzyme that can be solubilized by phosphatidylinositol-specific phospholipase C (PIPLC). As much as 70% of the cell-associated NADase was made soluble by treatment with PIPLC. The portion of NADase that remained cell-associated after an initial PIPLC treatment proved to be resistant to subsequent solubilization attempts. Further analysis showed that release of NADase from erythrocytes could not be attributed to the action of proteinases or phospholipase C. Erythrocytes obtained from other mammals were analyzed and found to have variable amounts of PIPLC-susceptible NADase. Practically, this finding can be used to easily solubilize membrane-bound NADase as a first step in its purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号