首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of methylamine in the tea plant (Thea sinensis L.)   总被引:5,自引:4,他引:1       下载免费PDF全文
1. The metabolism of methylamine in excised shoot tips of tea was studied with micromolar amounts of [(14)C]methylamine. Of the [(14)C]methylamine supplied 57% was utilized by tea shoots during the 10h experimental period. 2. The main products of [(14)C]methylamine metabolism in tea shoots were serine, gamma-glutamylmethylamide, theobromine, caffeine and CO(2). There was also incorporation of the label into glutamate, aspartate, RNA purine nucleotides and S-adenosylmethionine. 3. The formation of methylamine from gamma-glutamylmethylamide was confirmed by feeding tea shoots with gamma-glutamyl[(14)C]methylamide. The products of gamma-glutamyl[(14)C]methylamide metabolism in tea plants were serine, theobromine, caffeine, glutamate and aspartate. 4. The results indicate that the oxidation of methylamine to formaldehyde is the first step of methylamine utilization. Labelled formaldehyde released by the metabolism of methylamine leads to the incorporation of the label into metabolites on the C(1) pathways of this compound. It is also suggested that formaldehyde is further oxidized via formate to CO(2). 5. The role of gamma-glutamylmethylamide in methylamine metabolism in tea plants is discussed. 6. Results support the view that theobromine is the immediate precursor of caffeine.  相似文献   

2.
Photosystem II (PSII) catalyzes the oxidation of water during oxygenic photosynthesis. PSII is composed both of intrinsic subunits, such as D1, D2, and CP47, and extrinsic subunits, such as the manganese-stabilizing subunit (MSP). Previous work has shown that amines covalently bind to amino acid residues in the CP47, D1, and D2 subunits of plant and cyanobacterial PSII, and that these covalent reactions are prevented by the addition of chloride in plant preparations depleted of the 18- and 24-kDa extrinsic subunits. It has been proposed that these reactive groups are carbonyl-containing, post-translationally modified amino acid side chains (Ouellette, A. J. A., Anderson, L. B., and Barry, B. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 2204-2209 and Anderson, L. B., Ouellette, A. J. A., and Barry, B. A. (2000) J. Biol. Chem. 275, 4920-4927). To identify the amino acid binding site in the spinach D2 subunit, we have employed a biotin-amine labeling reagent, which can be used in conjunction with avidin affinity chromatography to purify biotinylated peptides from the PSII complex. Multidimensional chromato-graphic separation and multistage mass spectrometry localizes a novel post-translational modification in the D2 subunit to glutamate 303. We propose that this glutamate is activated for amine reaction by post-translational modification. Because the modified glutamate is located at a contact site between the D2 and manganese-stabilizing subunits, we suggest that the modification is important in vivo in stabilizing the interaction between these two PSII subunits. Consistent with this conclusion, mutations at the modified glutamate alter the steady-state rate of photosynthetic oxygen evolution.  相似文献   

3.
Biochemical characterization of intermediates involved in the assembly of the oxygen-evolving Photosystem II (PSII) complex is hampered by their low abundance in the membrane. Using the cyanobacterium Synechocystis sp. PCC 6803, we describe here the isolation of the CP47 and CP43 subunits, which, during biogenesis, attach to a reaction center assembly complex containing D1, D2, and cytochrome b(559), with CP47 binding first. Our experimental approach involved a combination of His tagging, the use of a D1 deletion mutant that blocks PSII assembly at an early stage, and, in the case of CP47, the additional inactivation of the FtsH2 protease involved in degrading unassembled PSII proteins. Absorption spectroscopy and pigment analyses revealed that both CP47-His and CP43-His bind chlorophyll a and β-carotene. A comparison of the low temperature absorption and fluorescence spectra in the Q(Y) region for CP47-His and CP43-His with those for CP47 and CP43 isolated by fragmentation of spinach PSII core complexes confirmed that the spectroscopic properties are similar but not identical. The measured fluorescence quantum yield was generally lower for the proteins isolated from Synechocystis sp. PCC 6803, and a 1-3-nm blue shift and a 2-nm red shift of the 77 K emission maximum could be observed for CP47-His and CP43-His, respectively. Immunoblotting and mass spectrometry revealed the co-purification of PsbH, PsbL, and PsbT with CP47-His and of PsbK and Psb30/Ycf12 with CP43-His. Overall, our data support the view that CP47 and CP43 form preassembled pigment-protein complexes in vivo before their incorporation into the PSII complex.  相似文献   

4.
Accumulation of monomer and dimer photosystem (PS) II reaction center core complexes has been analyzed by two-dimensional Blue-native/SDS-PAGE in Synechocystis PCC 6803 wild type and in mutant strains lacking genes psbA, psbB, psbC, psbDIC/DII, or the psbEFLJ operon. In vivo pulse-chase radiolabeling experiments revealed that mutant cells assembled PSII precomplexes only. In DeltapsbC and DeltapsbB, assembly of reaction center cores lacking CP43 and reaction center complexes was detected, respectively. In DeltapsbA, protein subunits CP43, CP47, D2, and cytochrome b559 were synthesized, but proteins did not assemble. Similarly, in DeltapsbD/C lacking D2, and CP43, the de novo synthesized proteins D1, CP47, and cytochrome b559 did not form any mutual complexes, indicating that assembly of the reaction center complex is a prerequisite for assembly with core subunits CP47 and CP43. Finally, although CP43 and CP47 accumulated in DeltapsbEFLJ, D2 was neither expressed nor accumulated. We, furthermore, show that the amount of D2 is high in the strain lacking D1, whereas the amount of D1 is low in the strain lacking D2. We conclude that expression of the psbEFLJ operon is a prerequisite for D2 accumulation that is the key regulatory step for D1 accumulation and consecutive assembly of the PSII reaction center complex.  相似文献   

5.
Analysis of a number of PSII complexes detectable in the wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 showed that the PsbH protein is present in the complexes containing CP47, including unassembled CP47. In a mutant lacking CP47, in which the PSII assembly is stopped at the level of the D1-D2-cytochrome b-559 reaction centre complex, a negligible amount of the PsbH protein was not bound to this complex but was detected in the free form. The results indicate that the PsbH protein has a high affinity for CP47 and during PSII assembly most probably first associates with CP47 and this pair is subsequently attached to the reaction centre complex. Similarly to CP47, the PsbH protein exhibits a slow light-induced degradation in the presence of protein synthesis inhibitor. The absence of the PsbH protein leads to a greatly increased D1 pool that is not associated with other PSII proteins or it is present as a part of the reaction centre complex. We conclude that PsbH is important for the prompt incorporation of the newly synthesized D1 protein into PSII complexes and for the fast D1 maturation.  相似文献   

6.
We studied the assembly of photosystem II (PSII) in several mutants from Chlamydomonas reinhardtii which were unable to synthesize either one PSII core subunit (P6 [43 kD], D1, or D2) or one oxygen-evolving enhancer (OEE1 or OEE2) subunit. Synthesis of the PSII subunits was analyzed on electrophoretograms of cells pulse labeled with [14C]acetate. Their accumulation in thylakoid membranes was studied on immunoblots, their chlorophyll-binding ability on nondenaturating gels, their assembly by detergent fractionation, their stability by pulse-chase experiments and determination of in vitro protease sensitivity, and their localization by immunocytochemistry. In Chlamydomonas, the PSII core subunits P5 (47 kD), D1, and D2 are synthesized in a concerted manner while P6 synthesis is independent. P5 and P6 accumulate independently of each other in the stacked membranes. They bind chlorophyll soon after, or concomitantly with, their synthesis and independently of the presence of the other PSII subunits. Resistance to degradation increases step by step: beginning with assembly of P5, D1, and D2, then with binding of P6, and, finally, with binding of the OEE subunits on two independent high affinity sites (one for OEE1 and another for OEE2 to which OEE3 binds). In the absence of PSII cores, the OEE subunits accumulate independently in the thylakoid lumen and bind loosely to the membranes; OEE1 was found on stacked membranes, but OEE2 was found on either stacked or unstacked membranes depending on whether or not P6 was synthesized.  相似文献   

7.
Ma J  Peng L  Guo J  Lu Q  Lu C  Zhang L 《The Plant cell》2007,19(6):1980-1993
To elucidate the molecular mechanism of photosystem II (PSII) assembly, we characterized the low psii accumulation2 (lpa2) mutant of Arabidopsis thaliana, which is defective in the accumulation of PSII supercomplexes. The levels and processing patterns of the RNAs encoding the PSII subunits are unaltered in the mutant. In vivo protein-labeling experiments showed that the synthesis of CP43 (for chlorophyll a binding protein) was greatly reduced, but CP47, D1, and D2 were synthesized at normal rates in the lpa2-1 mutant. The newly synthesized CP43 was rapidly degraded in lpa2-1, and the turnover rates of D1 and D2 were higher in lpa2-1 than in wild-type plants. The newly synthesized PSII proteins were assembled into PSII complexes, but the assembly of PSII was less efficient in the mutant than in wild-type plants. LPA2 encodes an intrinsic thylakoid membrane protein, which is not an integral subunit of PSII. Yeast two-hybrid assays indicated that LPA2 interacts with the PSII core protein CP43 but not with the PSII reaction center proteins D1 and D2. Moreover, direct interactions of LPA2 with Albino3 (Alb3), which is involved in thylakoid membrane biogenesis and cell division, were also detected. Thus, the results suggest that LPA2, which appears to form a complex with Alb3, is involved in assisting CP43 assembly within PSII.  相似文献   

8.
The structure, function and dynamics of photosystem two   总被引:6,自引:0,他引:6  
One of the greatest challenges in modern photosynthesis research is to elucidate fully the structural and functional properties of photosystem two (PSII). This water-plasto-quinone oxidoreductase is located in a membrane complex composed of more than 25 subunits. The primary and secondary structures of all known subunits which constitute the central core of PSII are reviewed. How these subunits interact with each other to produce the tertiary and quaternary structure of PSII in vivo is not fully understood. However, electron microscopy is helping to fill this gap in our knowledge both by single particle analysis and electron crystallography. These studies suggest that active PSII is dimeric, although the functional significance of this oligomeric state is not yet understood. Moreover, the elucidation of the structure of photosystem one (PSI) by X-ray crystallography has revealed features which are likely to be relevant to PSII structure. It seems highly likely that the D1 protein with CP43 and D2 protein with CP47 (summing 11 transmembrane helices in each case) will have structural similarities to the organisation of PsaA and PsaB. It is likely that the turnover of the D1 protein is aided by the relatively easy removal of CP43 from this arrangement of the PSII core.  相似文献   

9.
The antenna proteins in photosystem II (PSII) not only promote energy transfer to the photosynthetic reaction center (RC) but provide also an efficient cation sink to re-reduce chlorophyll a if the electron transfer (ET) from the Mn-cluster is inhibited. Using the newest PSII dimer crystal structure (3.0 A resolution), in which 11 beta-carotene molecules (Car) and 14 lipids are visible in the PSII monomer, we calculated the redox potentials (Em) of one-electron oxidation for all Car (Em(Car)) by solving the Poisson-Boltzmann equation. In each PSII monomer, the D1 protein harbors a previously unlocated Car (CarD1) in van der Waals contact with the chlorin ring of ChlZ(D1). Each CarD1 in the PSII dimer complex is located in the interface between the D1 and CP47 subunits, together with another four Car of the other PSII monomer and several lipid molecules. The proximity of Car bridging between CarD1 and plastoquinone/Q(A) may imply a direct charge recombination of Car+Q(A)-. The calculated Em(CarD1) and Em(ChlZ(D1)) are, respectively, 83 and 126 mV higher than Em(CarD2) and Em(ChlZ(D2)), which could explain why CarD2+ and ChlZ(D2)+ are observed rather than the corresponding CarD1+ and ChlZ(D1)+.  相似文献   

10.
Shen JR  Kamiya N 《Biochemistry》2000,39(48):14739-14744
A photosystem II (PSII) complex highly active in oxygen evolution was purified and crystallized from a thermophilic cyanobacterium, Synechococcus vulcanus. The PSII complex in the crystals contained the D1/D2 reaction center subunits, CP47 and CP43 (two chlorophyll-binding core antenna proteins of photosystem II), cytochrome b-559 alpha- and beta-subunits, several low molecular weight subunits, and three extrinsic proteins, that is, 33 and 12 kDa proteins and cytochrome c-550. The PSII complex also retained a high rate of oxygen evolution. The apparent molecular mass of the PSII in the crystals was determined to be 580 kDa by gel filtration chromatography, indicating that the PSII crystallized is a dimer. The crystals diffracted to a maximum resolution of 3.5 A at a cryogenic temperature using X-rays from a synchrotron radiation source, SPring-8. The crystals belonged to an orthorhombic system, and the space group was P2(1)2(1)2(1) with unit cell dimensions of a = 129.7 A, b = 226.5 A, and c = 307.8 A. Each asymmetric unit contained one PSII dimer, which gave rise to a specific volume (V(M)) of 3.6 A(3)/Da based on the calculated molecular mass of 310 kDa for a PSII monomer and an estimated solvent content of 66%. Multiple data sets of native crystals have been collected and processed to 4.0 A, indicating that our crystals are suitable for structure analysis at this resolution.  相似文献   

11.
The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC complex of PSII, demonstrating that the local structure of the primary reactants has remained intact in the isolated D1D2 complex.  相似文献   

12.
Photosystem II (PSII) mutants are useful experimental tools to trap potential intermediates involved in the assembly of the oxygen-evolving PSII complex. Here, we focus on the subunit composition of the RC47 assembly complex that accumulates in a psbC null mutant of the cyanobacterium Synechocystis sp. PCC 6803 unable to make the CP43 apopolypeptide. By using native gel electrophoresis, we showed that RC47 is heterogeneous and mainly found as a monomer of 220 kDa. RC47 complexes co-purify with small Cab-like proteins (ScpC and/or ScpD) and with Psb28 and its homologue Psb28-2. Analysis of isolated His-tagged RC47 indicated the presence of D1, D2, the CP47 apopolypeptide, plus nine of the 13 low-molecular-mass (LMM) subunits found in the PSII holoenzyme, including PsbL, PsbM and PsbT, which lie at the interface between the two momomers in the dimeric holoenzyme. Not detected were the LMM subunits (PsbK, PsbZ, Psb30 and PsbJ) located in the vicinity of CP43 in the holoenzyme. The photochemical activity of isolated RC47-His complexes, including the rate of reduction of P680+, was similar to that of PSII complexes lacking the Mn4CaO5 cluster. The implications of our results for the assembly and repair of PSII in vivo are discussed.  相似文献   

13.
Preparation of a minimum PSII core complex from spinach is described, containing four Mn per reaction center (RC) and exhibiting high O2 evolving activity [approximately 4000 micromol of O2 (mg of chl)(-1) x h(-1)]. The complex consists of the CP47 and CP43 chlorophyll binding proteins, the RC D1/D2 pair, the cytochrome b559 subunits, and the Mn-stabilizing psbO (33 kDa) protein, all present in the same stoichiometric amounts found in the parent PSII membranes. Several small subunits are also present. The cyt b559 content is 1.0 per RC in core complexes and PSII membranes. The total chlorophyll content is 32 chl a and <1 chl b per RC, the lowest yet reported for any active PSII preparation. The core complex exhibits the characteristic EPR signals seen in the S2 state of higher plant PSII. A procedure for preparing low-temperature samples of very high optical quality is developed, allowing detailed optical studies in the S1 and S2 states of the system to be made. Optical absorption, CD, and MCD spectra reveal unprecedented detail, including a prominent, well-resolved feature at 683.5 nm (14630 cm(-1)) with a weaker partner at 187 cm(-1) to higher energy. On the basis of band intensity, CD, and MCD arguments, these features are identified as the exciton split components of P680 in an intact, active reaction center special pair. Comparisons are made with solubilized D1/D2/cyt b559 material and cyanobacterial PSII.  相似文献   

14.
C Hartmann  J P Klinman 《FEBS letters》1990,261(2):441-444
Methylamine oxidase (EC 1.4.3.6) from Arthrobacter P1 was inactivated by NaCNBH3 in the presence of [14C]benzylamine, leading to the incorporation of 1 mol of radiolabeled substrate/mol of enzyme subunit at complete inactivation. By contrast, no labeling of enzyme was observed using [3H]NaCNBH3 as reductant. These results are analogous to those previously reported for the eukaryotic enzyme, bovine serum plasma amine oxidase [(1987) J. Biol. Chem. 262, 962-965]. The observed pattern of labeling is consistent with the presence of dicarbonyl cofactor at the active site of methylamine oxidase. Further, these studies suggest that our reductive trapping technique, in which the pattern of radiolabeling of an enzyme is compared using C-14 substrate vs tritiated reductant, may serve as a general assay for covalently bound dicarbonyl structures.  相似文献   

15.
Peng L  Ma J  Chi W  Guo J  Zhu S  Lu Q  Lu C  Zhang L 《The Plant cell》2006,18(4):955-969
To gain insight into the processes involved in photosystem II (PSII) biogenesis and maintenance, we characterized the low psii accumulation1 (lpa1) mutant of Arabidopsis thaliana, which generally accumulates lower than wild-type levels of the PSII complex. In vivo protein labeling experiments showed that synthesis of the D1 and D2 proteins was greatly reduced in the lpa1 mutant, while other plastid-encoded proteins were translated at rates similar to the wild type. In addition, turnover rates of the PSII core proteins CP47, CP43, D1, and D2 were higher in lpa1 than in wild-type plants. The newly synthesized PSII proteins were assembled into functional protein complexes, but the assembly was less efficient in the mutant. LPA1 encodes a chloroplast protein that contains two tetratricopeptide repeat domains and is an intrinsic membrane protein but not an integral subunit of PSII. Yeast two-hybrid studies revealed that LPA1 interacts with D1 but not with D2, cytochrome b6, or Alb3. Thus, LPA1 appears to be an integral membrane chaperone that is required for efficient PSII assembly, probably through direct interaction with the PSII reaction center protein D1.  相似文献   

16.
1. Nuclei from rat liver incubated with S-adenosyl[methyl-(14)C]methionine incorporated radioactivity into RNA and into lipid and protein. 2. All of the labelled RNA was extracted from the nuclei with trichloroacetic acid at 90 degrees C. 3. The [(14)C]methyl-group incorporation into the hot-trichloroacetic acid extract was 30% inhibited by the addition of actinomycin D (100mug/mg of DNA) or by the omission of CTP, GTP and UTP. 4. Assuming that the main substrate for this triphosphate-dependent methylation was newly synthesized precursor rRNA containing one methyl group/30 uridylate residues, it was calculated that approx. 60% of the [(14)C]UMP incorporated under similar conditions represented precursor rRNA synthesis. 5. In agreement with this, low concentrations of actinomycin D (approx. 1mug/mg of DNA) sufficient to abolish the triphosphate-dependent incorporation of [(14)C]methyl group inhibited 68% of the [(14)C]UMP incorporation. 6. The incorporation of [(14)C]UMP by nuclei from starved animals decreased progressively with increasing periods of starvation, whereas the triphosphate-dependent [(14)C]methyl-group incorporation was not further decreased after 1 day of starvation. 7. This suggests that precursor rRNA synthesis decreased within 1 day whereas other species of RNA were affected only after longer periods of starvation.  相似文献   

17.
The carboxyl terminus of the CP43 subunit of photosystem II (PSII) in the thermophilic cyanobacterium, Synechococcus elongatus, was genetically tagged with six consecutive histidine residues to create a metal binding site on the PSII supramolecular complex. The histidine-tagging enabled rapid isolation of an intact cyanobacterial PSII core complex from dodecyl maltoside-solubilized thylakoids by a simple one-step Ni(2+)-affinity column chromatography. The isolated core complex was in a dimeric form with a molecular mass of about 580 kDa, consisting of five major intrinsic membrane proteins (CP47, CP43, D1, D2 and cytochrome b-559), three extrinsic proteins (33 kDa, 12 kDa, and cytochrome c-550), and a few low molecular mass membrane proteins, and evolved oxygen at a rate as high as 3,400 mumol (mg Chl)-1 h-1 at 45 degrees C with ferricyanide as an electron acceptor. The core complex emitted thermoluminescence B2-, B1- and Q-bands arising from S2QB-, S3QB- and S2QA- charge recombinations at respective emission temperatures of 45, 38 and 20 degrees C, all of which were higher by about 15 degrees C as compared with those in mesophilic spinach BBY membranes. These results indicated that the isolated core complex well retained the intact properties of thermoluminescence of thermophilic cyanobacterial cells, the deeper stabilization of PSII charge pairs. The isolated complex was extremely stable in terms of both protein composition and function, exhibiting no release of extrinsic proteins, no proteolytic degradation in any of its subunits, accompanied by only a slight (less than 10%) loss in oxygen evolution, after dark-incubation at 20 degrees C for 8 d. These properties of the thermophilic PSII core complex are highly useful for various types of studies on PSII.  相似文献   

18.
The marine cyanobacterium Prochlorococcus marinus accumulates divinyl chlorophylls instead of monovinyl chlorophylls to harvest light energy. As well as this difference in its chromophore composition, some amino acid residues in its photosystem II D1 protein were different from the conserved amino acid residues in other photosynthetic organisms. We examined PSII complexes isolated from mutants of Synechocystis sp. PCC 6803, in which chromophore and D1 protein were altered (Hisashi Ito and Ayumi Tanaka, 2011) to clarify the effects of chromophores/D1 protein composition on the excitation energy distribution. We prepared the mutants accumulating divinyl chlorophyll (DV mutant). The amino acid residues of V205 and G282 in the D1 protein were substituted with M205 and C282 in the DV mutant to mimic Prochlorococcus D1 protein (DV-V205M/G282C mutant). Isolated PSII complexes were analyzed by time-resolved fluorescence spectroscopy. Energy transfer in CP47 was interrupted in PSII containing divinyl chlorophylls. The V205M/G282C mutation did not recover the energy transfer pathway in CP47, instead, the mutation allowed the excitation energy transfer from CP43 to CP47, which neighbors in the PSII dimer. Mutual orientation of the subcomplexes of PSII might be affected by the substitution. The changes of the energy transfer pathways would reduce energy transfer from antennae to the PSII reaction center, and allow Prochlorococcus to acquire light tolerance.  相似文献   

19.
Photosynthetic eukaryotes require the proper assembly of photosystem II (PSII) in order to strip electrons from water and fuel carbon fixation reactions. In Arabidopsis thaliana, one of the PSII subunits (CP43/PsbC) was suggested to be assembled into the PSII complex via its interaction with an auxiliary protein called Low PSII Accumulation 2 (LPA2). However, the original articles describing the role of LPA2 in PSII assembly have been retracted. To investigate the function of LPA2 in the model organism for green algae, Chlamydomonas reinhardtii, we generated knockout lpa2 mutants by using the CRISPR-Cas9 target-specific genome editing system. Biochemical analyses revealed the thylakoidal localization of LPA2 protein in the wild type (WT), whereas lpa2 mutants were characterized by a drastic reduction in the levels of D1, D2, CP47 and CP43 proteins. Consequently, reduced PSII supercomplex accumulation, chlorophyll content per cell, PSII quantum yield and photosynthetic oxygen evolution were measured in the lpa2 mutants, leading to the almost complete impairment of photoautotrophic growth. Pulse-chase experiments demonstrated that the absence of LPA2 protein caused reduced PSII assembly and reduced PSII turnover. Taken together, our data indicate that, in C. reinhardtii, LPA2 is required for PSII assembly and proper function.  相似文献   

20.
《BBA》1986,851(2):202-208
Photoaffinity labeling of Synechococcus Photosystem (PS) II preparations with radioactive azido-derivatives of three herbicides and of plastoquinone was carried out to identify herbicide and plastoquinone-binding proteins. [14C]Azido-atrazine and [14C]azido-monuron specifically labeled the 28 kDa polypeptide of the PS II reaction center complex, which is sensitive to 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). No specific labeling of this polypeptide with azido-atrazine was found in CP2-b (PS II reaction center lacking the 40 kDa subunit) which is insensitive to DCMU. [3H]Azido-dinoseb reacted with the 28 kDa polypeptide and the 47 kDa chlorophyll-carrying protein. The labeling with [3H]azido-plastoquinone resulted in the incorporation of the radioactivity exclusively into the 47 kDa polypeptide. It is concluded that the 28 kDa polypeptide is the herbicide-binding protein of the cyanobacterium and that the 47 kDa polypeptide has a binding site for plastoquinone and for phenol-type herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号