首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SN-Glycerol-3-phosphate acyltransferase was solubilized from membranes of Escherichia coli B and K-12 and purified on an affinity column of Sepharose 4B coupled with 6-phosphogluconic acid. Phosphatidylglycerol was required for activation and stabilization of the purified enzyme. The acyl residues were exclusively transferred to the position 1 of sn-glycerol 3-phosphate by the enzyme, regardless of whether the acyl-CoA was saturated or unsaturated.  相似文献   

2.
Overproduction of the sn-glycerol-3-phosphate acyltransferase in Escherichia coli leads to incorporation of this integral membrane protein into ordered tubular arrays within the cell. Freeze-fracture-etch shadowing was performed on suspensions of partially purified tubules and whole bacteria. This procedure revealed the presence of ridges and grooves defining a set of long-pitch left-handed helical ridges. The long-pitch helices represented chains of acyltransferase dimers. Tubules observed within the cell were often closely packed, with an apparent alignment of grooves and ridges in adjacent tubules. Fracture planes passing through the tubules indicated the presence of a bilayer structure, with some portion of the enzyme being associated with the membrane. The major portion of the enzyme extended from the hydrophilic surface, forming a large globular structure that, in favorable views, displayed a central cavity facing the cytoplasm. Computer analysis of shadowed tubules revealed that the left-handed helices were six stranded, with a pitch of 1,050 A (105.0 nm) and a spacing of 75 A (7.5 nm) between acyltransferase dimers along the chains. Analysis of the predicted secondary structure failed to reveal obvious transmembrane segments, suggesting that very little of the protein was inserted into the bilayer.  相似文献   

3.
The membrane localization and properties of the Rhodopseudomonas sphaeroides sn-glycerol-3-phosphate acyltransferase have been examined utilizing enzymatically prepared acyl-acyl carrier protein (acyl-ACP) substrates as acyl donors for sn-glycerol-3-phosphate acylation. Studies conducted with membranes prepared from chemotrophically and phototrophically grown cells show that sn-glycerol-3-phosphate acyltransferase activity is predominantly (greater than 80%) associated with the cell's cytoplasmic membrane. Enzyme activity associated with the intracytoplasmic membranes present in phototrophically grown R. sphaeroides was within the range attributable to cytoplasmic membrane contamination of this membrane fraction. Enzyme activity was optimal at 40 degrees C and pH 7.0 to 7.5, and required the presence of magnesium. No enzyme activity was observed with any of the long-chain acyl-CoA substrates examined. Vaccenoyl-ACP was the preferred acyl-ACP substrate and vaccenoyl-ACP and palmitoyl-ACP were independently utilized to produce lysophosphatidic and phosphatidic acids. With either vaccenoyl-ACP or palmitoyl-ACP as sole acyl donor substrate, the lysophosphatidic acid formed was primarily 1-acylglycerol-3-phosphate and the Km(app) for sn-glycerol-3-phosphate utilization was 96 microM. The implications of these results to the mode and regulation of phospholipid synthesis in R. sphaeroides are discussed.  相似文献   

4.
Yeast acyl-coenzyme A:dihydroxyacetone-phosphate O-acyltransferase (DHAP acyltransferase; EC 2.3.1.42) was investigated to (i) determine whether its activity and that of acyl-coenzyme A:sn-glycerol-3-phosphate O-acyltransferase (glycerol-P acyltransferase; EC 2.3.1.15) represent dual catalytic functions of a single membranous enzyme, (ii) estimate the relative contributions of the glycerol-P and DHAP pathways for yeast glycerolipid synthesis, and (iii) evaluate the suitability of yeast for future genetic investigations of the eucaryotic glycerol-P and DHAP acyltransferase activities. The membranous DHAP acyltransferase activity showed an apparent Km of 0.79 mM for DHAP, with a Vmax of 5.3 nmol/min per mg, whereas the glycerol-P acyltransferase activity showed an apparent Km of 0.05 mM for glycerol-P, with a Vmax of 3.4 nmol/min per mg. Glycerol-P was a competitive inhibitor (Ki, 0.07 mM) of the DHAP acyltransferase activity, and DHAP was a competitive inhibitor (Ki, 0.91 mM) of the glycerol-P acyltransferase activity. The two acyltransferase activities exhibited marked similarities in their pH dependence, acyl-coenzyme A chain length preference and substrate concentration dependencies, thermolability, and patterns of inactivation by N-ethylmaleimide, trypsin, and detergents. Thus, the data strongly suggest that yeast glycerol-P and DHAP acyltransferase activities represent dual catalytic functions of a single membrane-bound enzyme. Furthermore, since no acyl-DHAP oxidoreductase activity could be detected in yeast membranes, the DHAP pathway for glycerolipid synthesis may not operate in yeast.  相似文献   

5.
The soluble acyl-ACP:sn-glycerol-3-phosphate acyltransferase from chloroplasts of chilling-sensitive and -resistant plants differ in their fatty acid selectivity. Enzymes from resistant plants discriminate against non-fluid palmitic acid and select oleic acid whereas the acyltransferase from sensitive plants accepts both fatty acids. To use this difference for improving plant chilling resistance by biotechnology the gene for an oleate-selective enzyme is required. Therefore, the oleate-selective enzyme from pea seedlings was purified to apparent homogeneity. Tryptic peptides of internal origin were sequenced. Polyclonal antibodies raised in rabbits were used for an immunological screening of a pea leaf cDNA expression library in gt11. A positive clone of 1800 bp was selected showing an open reading frame which codes for 457 amino acids. The deduced amino acid sequence coincides perfectly with the tryptic sequences. A tentative assignment of the processing site was made which divides the preprotein into a mature protein of 41 kDa in accordance with experimental findings and a transit peptide of 88 amino acids. At present the comparison between a selective (pea) and an unselective (squash) acyltransferase sequence does not provide a clue for recognizing the structural differences resulting in different selectivities.  相似文献   

6.
A protein has been purified from the membranes of bloodstream forms of Trypanosoma brucei brucei. The purified material contained a single polypeptide chain of molecular mass 67 kilodaltons as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; under "native" conditions it migrated through a Sephacryl S-300 column with a similar molecular mass. The purified protein catalysed electron transfer from sn-glycerol 3-phosphate to oxygen with the subsequent formation of water. Electron transfer by the purified enzyme to O2 was dependent on the presence of low concentrations of the mediator phenazine methosulfate. This protein is clearly the major membrane-bound sn-glycerol-3-phosphate dehydrogenase, but it also has some characteristics suggestive of the trypanosome alternative oxidase activities.  相似文献   

7.
Rat mitochondrial glycerol-3-phosphate acyltransferase (GPAT) cDNA was cloned and characterized. We identified a cDNA containing an open reading frame of 828 amino acids that had an 89% homology with the coding region of the previously characterized mouse mitochondrial GPAT and a predicted amino acid sequence that was 96% identical. The rat 5' UTR was only 159 nucleotides, in contrast to the 926 nucleotide 5' UTR of the mouse cDNA and had an internal deletion of 167 nucleotides. GPAT was expressed in Sf21 insect cells, and specific inhibitors strongly suggest that, like the Escherichia coli GPAT, the recombinant mitochondrial GPAT and the mitochondrial GPAT isoform in rat liver contain critical serine, histidine, and arginine residues.  相似文献   

8.
9.
10.
An NAD-dependent glycerol-3-phosphate dehydrogenase (sn-glycerol-3-phosphate: NAD+ oxidoreductase, EC 1.1.1.8) has been isolated and purified from Saccharomyces cerevisiae by affinity and exclusion chromatography. The enzyme was purified 5100-fold to a specific activity of 158. It has a molecular weight of approximately 31,000, a pH optimum between 6.8 and 7.2, and is sensitive to high-ionic-strength salt solutions. The enzyme is most strongly inhibited by phosphate and chloride ions.  相似文献   

11.
The integral membrane protein, sn-glycerol-3-phosphate acyltransferase, catalyzes the first committed step in phospholipid synthesis, and both acyl-CoA and acyl-acyl carrier protein can be used as acyl donors in this reaction. We found that spermidine increased the specific activity of the acyltransferase when either substrate was used as the acyl donor. Magnesium, as well as other cations, also increased acyltransferase activity but were not nearly as effective as spermidine. Two roles for spermidine in this reaction were deduced from our data. First, spermidine dramatically lowered the Km for glycerol 3-phosphate resulting in an overall rate enhancement when either substrate was used as the acyl donor. This effect was attributed to the modification of the acyl-transferase environment due to the binding of spermidine to membrane phospholipids. A second effect of spermidine was evident only when acyl-acyl carrier protein was used as substrate. Using this acyl donor, a pH optimum of 7.5 was found in the absence of spermidine, but in its presence, the pH optimum was shifted to 8.5. Between pH 7.5 and 8.5, palmitoyl-acyl carrier protein undergoes a conformational change to a more expanded, denatured state and its activity in the acyltransferase assay decreases dramatically. Spermidine restored the native conformation of palmitoyl-acyl carrier protein at pH 8.5, thus accounting for the majority of rate enhancement observed at elevated pH.  相似文献   

12.
Fatty acid metabolism was examined in Escherichia coli plsB mutants that were conditionally defective in sn-glycerol-3-phosphate acyltransferase activity. The fatty acids synthesized when acyl transfer to glycerol-3-phosphate was inhibited were preferentially transferred to phosphatidylglycerol. A comparison of the ratio of phospholipid species labeled with 32Pi and [3H]acetate in the presence and absence of glycerol-3-phosphate indicated that [3H]acetate incorporation into phosphatidylglycerol was due to fatty acid turnover. A significant contraction of the acetyl coenzyme A pool after glycerol-3-phosphate starvation of the plsB mutant precluded the quantitative assessment of the rate of phosphatidylglycerol fatty acid labeling. Fatty acid chain length in membrane phospholipids increased as the concentration of the glycerol-3-phosphate growth supplement decreased, and after the abrupt cessation of phospholipid biosynthesis abnormally long chain fatty acids were excreted into the growth medium. These data suggest that the acyl moieties of phosphatidylglycerol are metabolically active, and that competition between fatty acid elongation and acyl transfer is an important determinant of the acyl chain length in membrane phospholipids.  相似文献   

13.
14.
The properties of the acyl-CoA:sn-glycerol-3-phosphate O-acyltransferase in a 20,000g particulate fraction from maturing safflower seeds were investigated. The optimum pH of the reaction was 7.2. The apparent Km for glycerophosphate was 0.54 mM. Only monoacylglycerophosphate was accumulated in the particulate fraction under normal conditions. Position 1 of glycerophosphate was exclusively esterified with either palmitoyl-CoA or linoleoyl-CoA as acyl donor, while 2-acylglycerophosphate was the minor product. The specificity and selectivity of the acyltransferase for acyl-CoA were broad and somewhat affected by temperature. The concentration of glycerophosphate did not affect the selectivity. These observations suggested that the fatty acid composition of position 1 of safflower triacylglycerol must primarily depend on the composition of the acyl-CoA pool in the site of synthesis, and that growth temperature and the acyl-CoA selectivity of the glycerophosphate acyltransferase may be rather minor factors regarding regulation of the fatty acid composition of position 1 in triacylglycerol.  相似文献   

15.
16.
A novel mixed micelle assay for the sn-glycerol-3-phosphate acyltransferase of Escherichia coli was developed using the nonionic detergent octaethylenegly-coldodecyl ether. The assay permitted investigation of the phospholipid dependence of enzyme activity at phospholipid/detergent ratios of 5:1 (w/w) to 2:1 depending on the phospholipid employed. The higher ratio yielded maximal activity when E. coli phospholipids were used; the lower ratio was observed with cardiolipin(E. coli). Phosphatidylglycerol(E. coli) and phosphatidylethanolamine(E. coli) also restored enzyme activity. Activation by phosphatidylethanolamine(E. coli) was pH-dependent and relatively inefficient. The synthetic, disaturated (1,2-palmitoyl)phosphatidylglycerol reconstituted only 25% of the total enzyme activity as that observed with the monounsaturated (1-palmitoyl, 2-oleoyl) species. Full activation of enzyme was achieved with (1,2-dioleoyl)phosphatidylglycerol. Phosphatidylcholine and phosphatidic acid were unable to reconstitute enzyme activity. Chromatographic sizing of the sn-glycerol-3-phosphate acyltransferase, following reconstitution in cardiolipin(E. coli)/octaethyleneglycoldodecyl ether mixed micelles, suggested that the monomeric form of the enzyme was active.  相似文献   

17.
The sn-glycerol-3-phosphate (glycerol-phosphate) acyltransferase of Escherichia coli was purified to near homogeneity and its activity reconstituted with phospholipids (Green, P.R., Merrill, A.M., Jr. and Bell, R.M. (1981) J. Biol. Chem. 256, 11151-11159). The competency of glycerol-P analogues to serve as inhibitors and as substrates was investigated. Dihydroxyacetone-P, ethyleneglycol-P, 1,3-propanediol-P, 3,4-dihydroxybutylphosphonate and DL-glyceraldehyde-3-P were inhibitors of the reconstituted purified glycerol-phosphate acyltransferase. The kinetics of inhibition, while formally of the mixed type, most closely resembled that of a simple competitive inhibition with respect to glycerol-3-P. Inorganic phosphate was also found to be a competitive inhibitor. All of the glycerol-3-P analogues except DL-glyceraldehyde-3-P were substrates. Of these, dihydroxyacetone-P proved to be the best substrate. The secondary hydroxyl was not necessary for activity. Glycerol-phosphate acyltransferase catalyzed the hydrolysis of palmitoyl-CoA in the presence of DL-, but not D-glyceraldehyde-3-P. This suggests that the gem diol of L-glyceraldehyde-3-P may be a substrate, and that the acylated adduct may be unstable. The enzyme was inactivated by phenylglyoxal and butanedione, suggesting that arginine may be at or near the active site.  相似文献   

18.
Lewin TM  Wang P  Coleman RA 《Biochemistry》1999,38(18):5764-5771
Alignment of amino acid sequences from various acyltransferases [sn-glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAAT), acyl-CoA:dihydroxyacetone-phosphate acyltransferase (DHAPAT), 2-acylglycerophosphatidylethanolamine acyltransferase (LPEAT)] reveals four regions of strong homology, which we have labeled blocks I-IV. The consensus sequence for each conserved region is as follows: block I, [NX]-H-[RQ]-S-X-[LYIM]-D; block II, G-X-[IF]-F-I-[RD]-R; block III, F-[PLI]-E-G-[TG]-R-[SX]-[RX]; and block IV, [VI]-[PX]-[IVL]-[IV]-P-[VI]. We hypothesize that blocks I-IV and, in particular, the invariant amino acids contained within these regions form a catalytically important site in this family of acyltransferases. Using Escherichia coli GPAT (PlsB) as a model acyltransferase, we examined the role of the highly conserved amino acid residues in blocks I-IV in GPAT activity through chemical modification and site-directed mutagenesis experiments. We found that the histidine and aspartate in block I, the glycine in block III, and the proline in block IV all play a role in E. coli GPAT catalysis. The phenylalanine and arginine in block II and the glutamate and serine in block III appear to be important in binding the glycerol 3-phosphate substrate. Since blocks I-IV are also found in LPAAT, DHAPAT, and LPEAT, we believe that these conserved amino acid motifs are diagnostic for the acyltransferase reaction involving glycerol 3-phosphate, 1-acylglycerol 3-phosphate, and dihydroxyacetone phosphate substrates.  相似文献   

19.
The naturally occurring electrophoretic variants of sn-glycerol-3-phosphate dehydrogenase and a heterodimeric form of the enzyme resulting from a genetic cross of two variant strains of Drosophila were purified to homogeneity by a combination of DEAE-cellulose chromatography and 8-(6-aminohexyl)-amino-ATP-Sepharose affinity chromatography. Each purified protein was compared with respect to a number of physicochemical and kinetic properties. All forms of the enzyme were found to be similar, except for pI differences associated with the electrophoretic variation observed.  相似文献   

20.
Protein GLPT, a periplasmic protein previously recognized as closely related to the active transport of sn-glycerol-3-phosphate in Escherichia coli was isolated by the cold osmotic shock procedure. It was purified by Sephadex chromatography and isoelectric focussing. The purified protein does not exhibit any detectable binding activity toward sn-glycerol-3-phosphate. It has no activity as a glycerol phosphatase nor as a glycerol kinase. Polyacrylamide gel electrophoresis in the presence of dodecylsulfate of the protein subsequent to treatment in urea, boiling in dodecylsulfate and crosslinking indicates that it occurs as an oligomeric protein composed of four identical subunits of 40 000 molecular weight. Membrane vesicles of wild-type strains that contain protein GLPT in whole cells loose it during vesicle preparation. However, they still exhibit high transport activity toward sn-glycerol-3-phosphate. Membrane vesicles prepared from glp T mutants that may or may not contain protein GLPT do not transport sn-glycerol-3-phospahte. We conclude from these results that protein GLPT does not participate in the energy-dependent active transport through the cytoplasmic membrane but could be involved in facilitating the diffusion of sn-glycerol-3-phosphate through the outer layers of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号