首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkanotrophic Rhodococcus ruber as a biosurfactant producer   总被引:1,自引:0,他引:1  
In this report we examined the structure and properties of surface-active lipids of Rhodococcus ruber. Most historical interest has been in the glycolipids of Rhodococcus erythropolis, which have been extensively characterised. R. erythropolis has been of interest due to its great metabolic diversity. Only recently has the metabolic potential of R. ruber begun to be explored. One major difference in the two species is that most R. ruber strains are able to oxidise the gaseous alkanes propane and butane. In preparation for investigation of the effects of gas metabolism on biosurfactant production, we set out to characterise the biosurfactants produced during growth on liquid n-alkanes and to compare these with R. erythropolis glycolipids.  相似文献   

2.
Members of the genus Rhodococcus were investigated for their ability to produce glycogen during cultivation on gluconate or glucose. Strains belonging to Rhodococcus ruber, Rhodococcus opacus, Rhodococcus fascians, Rhodococcus erythropolis and Rhodococcus equi were able to produce glycogen up to 0.2–5.6% of cellular dry weight (CDW). The glycogen content varied from 0.8% to 3.2% of CDW in cells of R. opacus PD630, which is a well-known oleaginous bacterium, during the exponential growth phase, when cultivated on diverse carbon sources. Maltose and pyruvate promoted glycogen accumulation by cells of strain PD630 to a greater extent than glucose, gluconate, lactose, sucrose or acetate. This strain was able to produce triacylglycerols, polyhydroxyalkanoates and glycogen as storage compounds during growth on gluconate, although triacylglycerols were always the main product under the conditions of this study. Cerulenin, an inhibitor of de novo fatty acid synthesis, inhibited the accumulation of triacylglycerols from gluconate and increased the content of polyhydroxyalkanoates (from 2.0% to 4.2%, CDW) and glycogen (from 0.1% to 3.0%, CDW). An increase of the polyhydroxyalkanoates and glycogen content was also observed in two mutants of R. opacus PD630, which produced reduced amounts of triacylglycerols during cultivation of cells on gluconate.  相似文献   

3.
4.
Aerobic acetylene-degrading bacteria were isolated from soil samples. Two isolates were assigned to the species Rhodococcus opacus, two others to Rhodococcus ruber and Gordona sp. They were compared with known strains of aerobic acetylene-, cyanide-, or nitrile-utilizing bacteria. The acetylene hydratases of R. opacus could be measured in cell-free extracts only in the presence of a strong reductant like titanium(III) citrate. Expression of these enzymes was molybdenum-dependent. Acetylene hydratases in cell-free extracts of R. ruber and Gordona spp. did not require addition of reductants. No cross-reactivity could be found between cell-free extracts of any of these aerobic isolates and antibodies raised against the acetylene hydratase of the strictly anaerobic fermenting bacterium Pelobacter acetylenicus. These results show that acetylene hydratases are a biochemically heterogeneous group of enzymes.  相似文献   

5.
Representatives of 11 species of Rhodococcus were examined for their ability to synthesize mycobactin, a lipid-soluble siderophore, following iron-limited growth on solidified glycerol/asparagine medium. Rhodococcus bronchialis, R. terrae and R. rubropertinctus formed mycobactins, whereas the remaining species (R. coprophilus, R. equi, R. erythropolis, R. rhodnii, R. rhodochrous, R. ruber, R. maris and R. luteus) failed to synthesize these compounds even under conditions of strictly iron-limited growth. The mycobactins from R. terrae and R. rubropertinctus showed close similarity by thin-layer chromatography and high-performance liquid chromatography and could be easily distinguished from that of R. bronchialis.  相似文献   

6.
Consumption of aliphatic hydrocarbons by the bacteria Rhodococcus ruber Ac-1513-D and Rhodococcus erythropolis Ac-1514-D grown on mixed n-alkanes and diesel fuel was studied. Consumption of diesel fuel hydrocarbons by the strains was less intense in comparison with the n-alkane mixture. The strains showed differences in growth rate and consumption of the substrates, which suggests that they possess different mechanisms of hydrocarbon uptake.  相似文献   

7.
The taxonomic positions of two actinomycetes, strains Bc663 and 10bc312T, provisionally assigned to the genus Rhodococcus were determined using a combination of genotypic and phenotypic properties. The organisms have phenotypic properties typical of members of the genus Rhodococcus and were assigned to the 16S rRNA subgroup which contains Rhodococcus rhodochrous and closely related species. The two strains, which have many phenotypic features in common, belong to the same genomic species albeit one readily separated from Rhodococcus ruber with which they form a distinct phyletic line. The organisms were also distinguished from all of the species classified in the R. rhodochrous subgroup, including R. ruber, using a combination of phenotypic properties. The genotypic and phenotypic data show that strains Bc663 and 10bc312T merit recognition as a new species of Rhodococcus. The name proposed for the new species is Rhodococcus aetherivorans (10bc312T = DSM 44752T = NCIMB 13964T).  相似文献   

8.
9.
Triacylglycerol granules synthesized and accumulated by Rhodococcus opacus and Rhodococcus ruber were isolated by glycerol density gradient centrifugation. Whereas only one type of granule could be isolated from R. opacus, two types of granules with different specific densities were isolated from R. ruber. Both types of R. ruber granules showed a similar content of triacylglycerols and poly(3-hydroxybutyrate- co-3-hydroxyvalerate), but the protein profiles of both types were significantly different. The granules with the lower specific density were colorless; the granules with the higher specific density had a deep orange pigmentation. Solubilization studies revealed three different groups of granule-associated proteins: (1) unspecifically bound proteins, (2) relatively weakly associated proteins, and (3) proteins that resisted solubilization by treatment with 2 M NaCl, 2% (w/v) Triton X-114, 6 M guanidinium hydrochloride, up to 8% (w/v) SDS, and proteolytic digestion. The strong association of proteins of the last group suggested that these may play a specific role in the synthesis or mobilization of storage lipids or in the structure of the granules. The N-terminal amino acid sequences of the most tightly bound proteins were obtained. Proteins of low molecular weight with striking sequence similarity to the ribosomal protein L7 from various actinomycetes were always copurified with the granules.  相似文献   

10.
Organically bound sulfur makes up about 90% of the total sulfur in soils, with sulfonates often the dominant fraction. Actinobacteria affiliated to the genus Rhodococcus were able to desulfonate arylsulfonates in wheat rhizospheres from the Broadbalk long-term field wheat experiment, which includes plots treated with inorganic fertilizer with and without sulfate, with farmyard manure, and unfertilized plots. Direct isolation of desulfonating rhizobacteria yielded Rhodococcus strains which grew well with a range of sulfonates, and contained the asfAB genes, known to be involved in sulfonate desulfurization by bacteria. Expression of asfA in vitro increased >100-fold during growth of the Rhodococcus isolates with toluenesulfonate as sulfur source, compared with growth with sulfate. By contrast, the closely related Rhodococcus erythropolis and Rhodococcus opacus type strains had no desulfonating activity and did not contain asfA homologues. The overall actinobacterial community structure in wheat rhizospheres was influenced by the sulfur fertilization regime, as shown by specific denaturing gradient gel electrophoresis of PCR amplified 16S rRNA gene fragments, and asfAB clone library analysis identified nine different asfAB genotypes closely affiliated to the Rhodococcus isolates. However, asfAB -based multiplex restriction fragment length polymorphism (RFLP)/terminal-RFLP analysis of wheat rhizosphere communities revealed only slight differences between the fertilization regimes, suggesting that the desulfonating Rhodococcus community does not specifically respond to changes in sulfate supply.  相似文献   

11.
A molecular screening approach was developed in order to amplify the genomic region that codes for the alpha- and beta-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066(T), which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

12.
13.
S Kosono  M Maeda  F Fuji  H Arai    T Kudo 《Applied microbiology》1997,63(8):3282-3285
Rhodococcus erythropolis TA421, a polychlorinated biphenyl and biphenyl degrader isolated from a termite ecosystem, has seven bphC genes expressing 2,3-dihydroxybiphenyl dioxygenase activity. R. erythropolis TA421 harbored a large and probably linear plasmid on which three (bphC2, bphC3, and bphC4) of the seven bphC genes were located. A non-biphenyl-degrading mutant, designated strain TA422, was obtained spontaneously from R. erythropolis TA421. TA422 lacked the plasmid, suggesting that the three bphC genes were involved in the degradation of biphenyl. Southern blot analyses showed that R. erythropolis TA421 and Rhodococcus globerulus P6 have a similar set of bphC genes and that the genes for biphenyl catabolism are located on plasmids of different sizes. These results indicated that the genes encoding the biphenyl catabolic pathway in Rhodococcus strains are borne on plasmids.  相似文献   

14.
N-acylhomoserine lactones (AHLs) are conserved signal molecules that control diverse biological activities in quorum sensing system of Gram-negative bacteria. Recently, several soil bacteria were found to degrade AHLs, thereby interfering with the quorum sensing system. Previously, Rhodococcus erythropolis W2 was reported to degrade AHLs by both oxido-reductase and AHL-acylase. In the present study, two AHL-utilizing bacteria, strains LS31 and PI33, were isolated and identified as the genus Rhodococcus. They exhibited different AHL-utilization abilities: Rhodococcus sp. strain LS31 rapidly degraded a wide range of AHLs, including N-3-oxo-hexanoyl-l-homoserine lactone (OHHL), whereas Rhodococcus sp. strain PI33 showed relatively less activity towards 3-oxo substituents. Coculture of strain LS31 with Erwinia carotovora effectively reduced the amount of OHHL and pectate lyase activity, compared with coculture of strain PI33 with E. carotovora. A mass spectrometry analysis indicated that both strains hydrolyzed the lactone ring of AHL to generate acylhomoserine, suggesting that AHL-lactonases (AHLases) from the two Rhodococcus strains are involved in the degradation of AHL, in contrast to R. erythropolis W2. To the best of our knowledge, this is the first report on AHLases of Rhodococcus spp.  相似文献   

15.
The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.  相似文献   

16.
Numerical classification of Rhodococcus equi and related actinomycetes   总被引:3,自引:1,他引:2  
Eighty-three strains received as Corynebacterium or Rhodococcus equi and marker cultures of Corynebacterium and Rhodococcus species were subjected to numerical phenetic analyses using 112 unit characters. The data were examined using the simple matching ( S SM) and Jaccard ( S J) coefficients and clustering was achieved using the average linkage algorithm. Cluster composition was not markedly affected by the coefficient used or by test error, estimated at 2.9%. Most of the strains received as R. (C.) equi formed a distinct and homogeneous cluster in the aggregate Rhodococcus taxon, the strains of which were sharply separated from marker cultures of C. pseudotuberculosis and C. renale. The taxon R. equi was redescribed and Nocardia calcarea Metcalf & Brown reduced to a subjective synonym of R. erythropolis (Gray & Thornton) Goodfellow & Alderson.  相似文献   

17.
AIMS: To develop an encapsulation procedure for Rhodococcus erythropolis NI86/21 and demonstrate its use as a slow-release inoculant for reducing atrazine levels in aquatic and terrestrial environments. METHODS AND RESULTS: Alginate encapsulation procedures were developed for the atrazine-degrading bacteria R. erythropolis NI86/21. Several bead amendments, including bentonite, powdered activated carbon (PAC) and skimmed milk (SM), were evaluated for slow release of R. erythropolis NI86/21 and efficacy of atrazine degradation. All bead types demonstrated a capacity to degrade atrazine in basal minimal nutrient buffer whilst continually releasing viable bacterial cells. We found that the addition of bentonite hastened cell release whilst SM sustained cell viability in bead formulations. Reducing the percentage of SM to 1% (w/v) resulted in faster rates of atrazine degradation in both liquid and soil, and was found to prolong cell survival upon bead storage. Limited oxygen transfer affects the capacity of the encapsulated R. erythropolis cells to degrade atrazine. CONCLUSIONS: Degradation studies have demonstrated the efficacy of R. erythropolis encapsulated cells to degrade atrazine in amended liquid and soil. However, in their current formulation, the wet alginate-based beads are impractical for field application because of their poor cell viability during storage. SIGNIFICANCE AND IMPACT OF THE STUDY: R. erythropolis NI86/21-encapsulated cells have the potential to reduce atrazine residues in a number of soil and water environments, possibly ensuring the continued registration and use of atrazine in agriculture by minimizing or eliminating nontarget effects.  相似文献   

18.
Yu B  Ma C  Zhou W  Wang Y  Cai X  Tao F  Zhang Q  Tong M  Qu J  Xu P 《FEMS microbiology letters》2006,258(2):284-289
Rhodococcus erythropolis XP could grow well with condensed thiophenes, mono-thiophenic compounds and mercaptans present in gasoline. Rhodococcus erythropolis XP was also capable of efficiently degrading the condensed thiophenes in resting cell as well as biphasic reactions in which n-octane served as a model oil phase. Free whole cells of R. erythropolis XP were adopted to desulfurize fluid catalytic cracking (FCC) and straight-run (SR) gasoline oils. About 30% of the sulfur content of FCC gasoline and 85% of sulfur in SR gasoline were reduced, respectively. Gas chromatography analysis with atomic emission detection also showed depletion of sulfur compounds in SR gasoline. Rhodococcus erythropolis XP could partly resist the toxicity of gasoline and had an application potential to biodesulfurization of gasoline.  相似文献   

19.
Study of the conversion of chlorophenols by Rhodococcus opacus 1G, R. rhodnii 135, R. rhodochrous 89, and R. opacus 1cp disclosed the dependence of the conversion rate and pathway on the number and position of chlorine atoms in the aromatic ring. The most active chlorophenol converter, strain R. opacus 1cp, grew on each of the three isomeric monochlorophenols and on 2,4-dichlorophenol; the rate of growth decreased from 4-chlorophenol to 3-chlorophenol and then to 2-chlorophenol. The parameters of growth on 2,4-dichlorophenol were the same as on 3-chlorophenol. None of the strains studied utilized trichlorophenols. A detailed study of the pathway of chlorophenol transformation showed that 3-chloro-, 4-chloro-, and 2,4-dichlorophenol were utilized by the strains via a modified ortho-pathway. 2-Chlorophenol and 2,3-dichlorophenol were transformed by strains R. opacus 1cp and R. rhodochrous 89 via corresponding 3-chloro- and 3,4-dichloropyrocatechols, which were then hydroxylated with the formation of 4-chloropyrogallol and 4,5-dichloropyrogallol; this route had not previously been described in bacteria. Phenol hydroxylase of R. opacus 1G exhibited a previously undescribed catalytic pattern, catalyzing oxidative dehalogenation of 2,3,5-trichlorophenol with the formation of 3,5-dichloropyrocatechol but not hydroxylation of the nonsubstituted position 6.  相似文献   

20.
Tao F  Zhao P  Li Q  Su F  Yu B  Ma C  Tang H  Tai C  Wu G  Xu P 《Journal of bacteriology》2011,193(22):6422-6423
Rhodococcus erythropolis strains have shown excellent characteristics in petroleum oil biodesulfurization. Here we present the first announcement of the draft genome sequence of an efficient biodesulfurizing bacterium named R. erythropolis XP (7,229,582 bp). The biodesulfurizing genes dszABC are located on a plasmid, while the flavin reductase gene dszD is located on the chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号