首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated and sequenced cDNA clones corresponding to the entire coding sequences of the human lysosomal membrane glycoproteins, lamp-1 and lamp-2 (h-lamp-1 and h-lamp-2). The deduced amino acid sequences indicate that h-lamp-1 and h-lamp-2 consist of 416 and 408 amino acid residues, respectively, and suggest that 27 and 28 NH2-terminal residues are cleavable signal peptides. The major portions of both h-lamp-1 and h-lamp-2 reside on the luminal side of the lysosome and are heavily glycosylated by N-glycans: h-lamp-1 and h-lamp-2 were found to contain 19 and 16 potential N-glycosylation sites, respectively. The findings are consistent with the results obtained by endo-beta-N-acetylglucosaminidase F treatment of h-lamp-1 and h-lamp-2 precursors, described in the preceding paper (Carlsson, S. R., Roth, J., Piller, F., and Fukuda, M. (1988) J. Biol. Chem. 263, 18911-18919). These N-glycosylation sites are clustered into two domains separated by a hinge-like structure enriched with proline and serine in h-lamp-1 or proline and threonine in h-lamp-2. The two domains of h-lamp-1 on each side of the hinge region are homologous to each other, whereas no such homology was detected between the two domains of h-lamp-2. Both proteins have one putative transmembrane domain consisting of 24 hydrophobic amino acids near the COOH terminus, and contain a short cytoplasmic segment composed of 11 amino acid residues at the COOH-terminal end. Comparison of h-lamp-1 and h-lamp-2 sequences reveal strong homology between the two molecules, particularly in the proximity to the COOH-terminal end. It is possible that this portion is important for targeting the molecules to lysosomes. These results also suggest that lamp-1 and lamp-2 are evolutionarily related. Comparison of known lamp-1 sequences among different species, on the other hand, show that human lamp-1 has more similarity to lamp-1 from other species than to human lamp-2. This fact, taken together with the finding that h-lamp-2 lacks repeating domains, suggests that lamp-1 and lamp-2 diverged from a putative ancestor gene in early stages of evolution. These results also suggest that lamp-1 and lamp-2 probably have distinctly separate functions despite the fact that they share many structural features.  相似文献   

2.
delta-Aminolevulinate synthase (ALAS) catalyzes the first committed step of heme biosynthesis. Previous studies suggested that there were erythroid and nonerythroid ALAS isozymes. We have isolated cDNAs encoding the ubiquitously expressed housekeeping ALAS isozyme and a related, but distinct, erythroid-specific isozyme. Using these different cDNAs, the human ALAS housekeeping gene (ALAS1) and the human erythroid-specific (ALAS2) gene have been localized to chromosomes 3p21 and X, respectively, by somatic cell hybrid and in situ hybridization techniques. The ALAS1 gene was concordant with chromosome 3 in all 26 human fibroblast/murine(RAG) somatic cell hybrid clones analyzed and was discordant with all other chromosomes in at least 6 of 26 clones. The regional localization of ALAS1 to 3p21 was accomplished by in situ hybridization using the 125I-labeled human ALAS1 cDNA. Of the 43 grains observed over chromosome 3, 63% were localized to the region 3p21. The gene encoding ALAS2 was assigned by examination of a DNA panel of 30 somatic cell hybrid lines hybridized with the ALAS2 cDNA. The ALAS2 gene segregated with the human X chromosome in all 30 hybrid cell lines analyzed and was discordant with all other chromosomes in at least 8 of the 30 hybrids. These results confirm the existence of two independent, but related, genes encoding human ALAS. Furthermore, the mapping of the ALAS2 gene to the X chromosome and the observed reduction in ALAS activity in X-linked sideroblastic anemia suggest that this disorder may be due to a mutation in the erythroid-specific gene.  相似文献   

3.
Homologous clones that encode the beta chain of the T cell antigen receptor have been isolated recently from both murine and human cDNA libraries. These cDNA clones have been used in connection with interspecies hybrid cell lines to determine that the murine T cell receptor gene is located on chromosome 6 and the human gene on chromosome 7. In situ hybridization confirms these data and further localizes these genes to band B of chromosome 6 in the mouse and bands 7p13-21 in the human genome. The organization of the T cell antigen receptor J beta gene segments and C beta genes appears to be conserved, since very few intraspecies polymorphisms of restriction fragment length have been detected in either mouse or human DNA.  相似文献   

4.
The serum protein cystic fibrosis-associated antigen (CFAG), present at elevated levels in CF homozygotes and heterozygotes, is now known to consist of two distinct but related subunits (calgranulins A (CAGA) and B (CAGB)). Both show similarity to the S100-related calcium-binding proteins. We have previously assigned CAGA to human chromosome 1q12-q21 and demonstrate here that the cDNA probe for CAGB cosegregates with it in our somatic cell hybrid panel. cDNA probes for the related genes calcyclin (CACY) and a mouse placental protein (18A2, suggested name Capl) enabled us to confirm and refine the in situ hybridization result assigning CACY to chromosome 1q21-25 and to demonstrate that both genes cosegregate with CAGA and CAGB. Capl was mapped to a region of chromosome 3 in the mouse using the BXD recombinant inbred strain mice where the p11 protein (calpactin light chain Cal1l), another S100 family member, has been localized. Cacy is shown to be within 8 kb of Capl in the mouse genome.  相似文献   

5.
The human interferon-beta 2 gene (IFNB2) is identical to the genes encoding the B-cell stimulatory factor (BSF-2), the hybridoma growth factor (HGF), and the hepatocyte stimulating factor (HSF). This protein mediates major alterations in the secretion of a wide spectrum of plasma proteins by the liver in response to tissue injury (the acute-phase response). We have used a cDNA probe specific to the human IFNB2 gene in DNA hybridization experiments and report the regional localization of this gene to human chromosome 7p15-p21. Southern blot analyses of DNA extracted from a panel of mouse X human somatic cell hybrids localized this gene to human chromosome 7p. In situ hybridization of the IFNB2 cDNA probe to prebanded human metaphase chromosome spreads allowed the further localization of this gene to 7p15-p21.  相似文献   

6.
The nicotinic acetylcholine receptor of skeletal muscle (CHRN in man, Acr in mouse) is a transmembrane protein composed of four different subunits (alpha, beta, gamma, and delta) assembled into the pentamer alpha 2 beta gamma delta. These subunits are encoded by separate genes which derive from a common ancestral gene by duplication. We have used a murine full-length 1,900-bp-long cDNA encoding the gamma subunit subcloned into M 13 (clone gamma 18) to prepare single-stranded probes for hybridization to EcoRI-digested DNA from a panel of human x rodent somatic cell hybrids. Using conditions of low stringency to favor cross-species hybridization, and prehybridization with rodent DNA to prevent rodent background, we detected a single major human band of 30-40 kb. The pattern of segregation of this 30-40 kb band correlated with the segregation of human chromosome 2 within the panel and the presence of a chromosomal translocation in the distal part of the long arm of this t(X;2)(p22;q32.1) chromosome allowing the localization of the gamma subunit gene (CHRNG) to 2q32----qter. The human genes encoding the gamma and delta subunits have been shown to be contained in an EcoRI restriction fragment of approximately 20 kb (Shibahara et al., 1985). Consequently, this study also maps the delta subunit gene (CHRND) to human chromosome 2q32.1----qter. In the mouse, the Acrd and Acrg genes have been shown to be linked to Idh-1, Mylf (IDH1 and MYL1 in humans, respectively) and to the gene encoding villin on chromosome 1. Interestingly, we have recently localized the human MYL1 gene to the same chromosomal fragment of human chromosome 2. These results clearly demonstrate a region of chromosomal homoeology between mouse chromosome 1 and human chromosome 2.  相似文献   

7.
The chromosomal locations of the human and murine T11 (CD2) gene have been determined. Using recently cloned cDNA to probe Southern blots of mouse X human and Chinese hamster X mouse somatic cell hybrids, we have localized the human T11 gene to chromosome 1 and the murine T11 gene to chromosome 3. Based on previously determined blocks of homology between human chromosome 1 and mouse chromosome 3, it is suggested that the human T11 gene may lie on the short arm of chromosome 1 proximal to p221. Thus, the T11 gene is not linked to any other genes for T cell markers that have been mapped to date.  相似文献   

8.
A human cDNA probe of the tumour protein p53 (TP53) was used to localize the homologous porcine gene by in situ hybridization. The gene was mapped to chromosome 12q12-q14. Together with already known mapping data, these results confirm the localization of an evolutionary conserved linkage group on porcine chromosome 12 which is localized in man on chromosome 17, in cattle on chromosome 19, and in mice on chromosome 11.  相似文献   

9.
We have mapped the genes for the human and mouse L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77) using cDNA probes. We determined that the human gene is present in chromosome 6 by Southern blot analysis of DNA from a panel of mouse-human somatic cell hybrids. In situ hybridization studies allowed us to confirm this identification and further localize the human gene (PCMT1) to the 6q22.3-6q24 region. By analyzing the presence of an EcoRI polymorphism in DNA from backcrosses of C57BL/6J and Mus spretus strains of mice, we localized the mouse gene (Pcmt-1) to chromosome 10, at a position 8.2 +/- 3.5 cM proximal to the Myb locus. This region of the mouse chromosome is homologous to the human 6q24 region.  相似文献   

10.
Apolipoprotein (apo) A-I is a major protein of high density lipoproteins (HDL). The gene for apoA-I has been localized to the p11 leads to q13 region of chromosome 11 by filter hybridization analysis of mouse-human hybrid cell cDNAs containing chromosome 11 translocations utilizing a cloned human apoA-I cDNA probe. The known linkage of apoA-I and apoC-III also permitted the simultaneous assignment of the apoC-III gene to the same region on chromosome 11. Comparison with previously established gene linkages on the mouse and human genome suggests that apoA-I + apoC-III may be linked to the esterase A4 and uroporphyrinogen synthase genes which are present on the long arm of human chromosome 11. The localization of the apoA-I + apoC-III genes in the p11----q13 region of chromosome 11 represents a definitive chromosomal assignment of a human apolipoprotein gene, and will now enable more detailed analysis of the geneomic organization and linkages of the apolipoprotein genes.  相似文献   

11.
Thioredoxin, a ubiquitous enzyme possessing an oxidoreductase activity, has recently been cloned in human. Using in situ chromosomal hybridization with a human thioredoxin cDNA probe, we have precisely localized the thioredoxin gene on chromosome 3 at bands 3p11-p12.  相似文献   

12.
Three human cDNAs encoding new RAS-related cDNAs, designated RAP1A, RAP1B, and RAP2, have been isolated previously. The encoded proteins are highly related to RAS in the effector region and share an overall identity with RAS of approximately 50%. Using the complete cDNAs or parts thereof as probes, each RAP gene has been localized on human chromosomes by in situ hybridization. The three genes RAP1A, RAP1B, and RAP2 have been assigned to chromosome bands 1p12----p13, 12q14, and 13q34, respectively.  相似文献   

13.
Macrophage colony stimulating factor (CSF-1) is a member of a family of glycoproteins that are necessary for the normal proliferation and differentiation of myeloid progenitor cells. The human CSF-1 gene has previously been assigned to chromosome 5 using somatic cell hybrids, and further localized to 5q33 by in situ hybridization with a 3H labelled cDNA probe. However, the murine macrophage colony stimulating factor gene (csfm) has been localized to a region on mouse chromosome 3 which was previously shown to be syntenic with the proximal region of 1p and not 5q. Using a human genomic DNA clone that contains the CSF-1 gene, we have localized CSF-1 to chromosome 1p13-21 by fluorescence in situ hybridization. The reassignment of the CSF-1 gene argues against its involvement in myeloid disorders with deletions of the long arm of chromosome 5.  相似文献   

14.
The ribonuclease inhibitor from human placenta is a tight-binding inhibitor of alkaline and neutral ribonucleases, including the blood vessel-inducing protein, angiogenin. The location of the inhibitor gene within the human genome has now been determined. Utilizing human-rodent hybrid cell lines, it was found on chromosome 11. The localization was refined to chromosome band 11p15 by in situ hybridization of the ribonuclease inhibitor cDNA to normal metaphase chromosomes. A further refinement was obtained by in situ hybridization of the probe to metaphase chromosomes from RPMI 8402 cells, a line containing a well-characterized translocation t(11;14)(p15;q11) with a chromosome 11 breakpoint between the insulin-like growth factor 2 (IGF2) and Harvey rat sarcoma viral oncogene homolog genes. This analysis has localized the ribonuclease inhibitor gene to chromosome subband 11p15.5, distal to the IGF2 gene.  相似文献   

15.
Several phosphoglycerate kinase genes were previously detected in the human genome by blot hybridization with a phosphoglycerate kinase cDNA probe. Using subcloned fragments of the cDNA we estimate the presence of four independent phosphoglycerate kinase genes. These genes have been mapped to both the human X chromosome (band q13) and chromosome 6 (p12-21.1) using a panel of human-rodent somatic cell hybrids and by chromosomal in situ hybridization. The genomic distribution of phosphoglycerate kinase sequences is conserved in man and mouse, not only for the X chromosome, but also for linkage to the respective major histocompatibility complexes. Molecular cloning of X-linked phosphoglycerate kinase sequences led to the identification of a novel intronless phosphoglycerate kinase pseudogene which is localized proximal to the active gene on the X chromosome.  相似文献   

16.
Summary A 2.3-kb cDNA probe for the human bek fibroblast growth factor receptor was used to determine the chromosomal localization of the corresponding gene by in situ hybridization. The results show that this gene, a form of which is amplified in some poorly differentiated stomach cancers, is localized on chromosome region 10q26. The two previously identified fibroblast growth factor receptor genes are thus not on the same chromosome, as the related fig (fms-like gene) fibrovblast growth factor receptor gene has previously been mapped to human chromosome region 8p12.  相似文献   

17.
Murine cDNA clones for three cyclin D genes that are normally expressed during the G1 phase of the cell cycle were used to clone the cognate human genes. Bacteriophage and cosmid clones encompassing five independent genomic loci were partially sequenced and chromosomally assigned by an analysis of somatic cell hybrids containing different human chromosomes and by fluorescence in situ hybridization to metaphase spreads from normal peripheral blood lymphocytes. The human cyclin D1 gene (approved gene symbol, CCND1) was assigned to chromosome band 11q13, cyclin D2 (CCND2) to chromosome band 12p13, and cyclin D3 (CCND3) to chromosome band 6p21. Pseudogenes containing sequences related to cyclin D2 and cyclin D3 mapped to chromosome bands 11q13 and 6p21, respectively. Partial nucleotide sequence analysis of exons within each gene revealed that the authentic human cyclin D genes are more related to their mouse counterparts than to each other. These genes are ubiquitously transcribed in human tumor cell lines derived from different cell lineages, but are independently and, in many cases, redundantly expressed. The complex patterns of expression of individual cyclin D genes and their evolutionary conservation across species suggest that each family member may play a distinct role in cell cycle progression.  相似文献   

18.
Maple syrup urine disease (MSUD) is caused by the deficiency of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex. The multienzyme complex is a macromolecule (Mr 4 X 10(6] consisting of at least six distinct subunits. In this study, the human E1 beta gene (BCKDHB) has been localized to human chromosome 6 by hybrid somatic cell analysis, and regionally assigned to chromosome bands 6p21-22 by in situ hybridization. The E2 gene (DBT), which was previously localized to chromosome 1, is regionally assigned to the chromosome band 1p31 also by in situ hybridization. Localization of the E1 beta gene to chromosome 6p21-22 assigns another major human disease locus to a region that contains several important genes, including the major histocompatability complex, tumor necrosis factor, and heat-shock protein HSP70. Mapping of the E1 beta and the E2 genes may provide information for the linkage analysis of MSUD families with mutations in these two loci.  相似文献   

19.
Adenylyl cyclase activity plays a central role in the regulation of most cellular processes. At least eight different adenylyl cyclases have been identified, which are endowed with various and sometimes opposing regulatory properties. Recently we have localized the human genes encoding two of these adenylyl cyclases: the gene for type 11 adenylyl cyclase is located on chromosome 2 (sub-band 2p15.3), the gene for type VIII is located on chromosome 8 (sub-band 8824.2). More recently the type I gene has been located on chromosome 7 (sub-band 7pl2–7p13). Using in situ hybridization, we have now localized the genes for three other adenylyl cyclases: the type III gene has been localized on chromosome 2 in the sub-band 2p22–2p24, the type V gene on chromosome 3 at position 3q13.2–3q21, and the type VI gene on chromosome 12 at position 12q12–12q13. It therefore appears that all adenylyl cyclase genes, known at present are located on different chromosomes and thus are likely to be independently regulated.  相似文献   

20.
Cadmium resistant (Cdr) variants with coordinately amplified metallothionein I and II (MTI and MTII) genes have been derived from both Chinese hamster ovary and near-euploid Chinese hamster cell lines. Cytogenetic analyses of Cdr variants consistently revealed breakage and rearrangement involving chromosome 3p. In situ hybridization with a Chinese hamster MT-encoding cDNA probe localized amplified MT gene sequences near the translocation breakpoint involving chromosome 3p. These observations suggested that both functionally related, isometallothionein loci are linked on Chinese hamster chromosome 3. Southern blot analyses of DNAs isolated from a panel of Chinese hamster X mouse somatic cell hybrids which segregate hamster chromosomes confirmed that both MTI and MTII are located on chromosome 3. We speculate that rearrangement of chromosome 3p could be causally involved with the amplification of MT genes in Cdr hamster cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号