首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative stress is a universal phenomenon experienced by organisms in all domains of life. Proteins like those in the ferritin-like di-iron carboxylate superfamily have evolved to manage this stress. Here we describe the cloning, isolation, and characterization of a Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus (PfDps-like). Phylogenetic analysis, primary structure alignments and higher order structural predictions all suggest that the P. furiosus protein is related to proteins within the broad superfamily of ferritin-like di-iron carboxylate proteins. The recombinant PfDps protein self-assembles into a 12 subunit quaternary structure with an outer shell diameter of approximately 10nm and an interior diameter of approximately 5 nm. Dps proteins functionally manage the toxicity of oxidative stress by sequestering intracellular ferrous iron and using it to reduce H(2)O(2) in a two electron process to form water. The iron is converted to a benign form as Fe(III) within the protein cage. This Dps-mediated reduction of hydrogen peroxide, coupled with the protein's capacity to sequester iron, contributes to its service as a multifunctional antioxidant.  相似文献   

2.
The gene encoding a threonine dehydrogenase (TDH) has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The Pf-TDH protein has been functionally produced in Escherichia coli and purified to homogeneity. The enzyme has a tetrameric conformation with a molecular mass of approximately 155 kDa. The catalytic activity of the enzyme increases up to 100 degrees C, and a half-life of 11 min at this temperature indicates its thermostability. The enzyme is specific for NAD(H), and maximal specific activities were detected with L-threonine (10.3 U x mg(-1)) and acetoin (3.9 U x mg(-1)) in the oxidative and reductive reactions, respectively. Pf-TDH also utilizes L-serine and D-threonine as substrate, but could not oxidize other L-amino acids. The enzyme requires bivalent cations such as Zn2+ and Co2+ for activity and contains at least one zinc atom per subunit. Km values for L-threonine and NAD+ at 70 degrees C were 1.5 mm and 0.055 mm, respectively.  相似文献   

3.
Phosphoenolpyruvate synthetase (PpsA) was purified from the hyperthermophilic archaeon Pyrococcus furiosus. This enzyme catalyzes the conversion of pyruvate and ATP to phosphoenolpyruvate (PEP), AMP, and phosphate and is thought to function in gluconeogenesis. PpsA has a subunit molecular mass of 92 kDa and contains one calcium and one phosphorus atom per subunit. The active form has a molecular mass of 690 ± 20 kDa and is assumed to be octomeric, while approximately 30% of the protein is purified as a large (~1.6 MDa) complex that is not active. The apparent Km values and catalytic efficiencies for the substrates pyruvate and ATP (at 80°C, pH 8.4) were 0.11 mM and 1.43 × 104 mM−1 · s−1 and 0.39 mM and 3.40 × 103 mM−1 · s−1, respectively. Maximal activity was measured at pH 9.0 (at 80°C) and at 90°C (at pH 8.4). The enzyme also catalyzed the reverse reaction, but the catalytic efficiency with PEP was very low [kcat/Km = 32 (mM · s)−1]. In contrast to several other nucleotide-dependent enzymes from P. furiosus, PpsA has an absolute specificity for ATP as the phosphate-donating substrate. This is the first PpsA from a nonmethanogenic archaeon to be biochemically characterized. Its kinetic properties are consistent with a role in gluconeogenesis, although its relatively high cellular concentration (~5% of the cytoplasmic protein) suggests an additional function possibly related to energy spilling. It is not known whether interconversion between the smaller, active and larger, inactive forms of the enzyme has any functional role.  相似文献   

4.
Micromanipulation was used to obtain an isolate (BEN 52) of Eikelboom Type 1851 from a bulking activated sludge plant. Its 16S rDNA sequence reveals its closest relative is 'Roseiflexus castenholzii', a member of the phylum 'Chloroflexi', class 'Chloroflexi', previously called the green non-sulfur bacteria. The 16S rRNA targeted oligonucleotide probe designed for fluorescence in situ hybridisation against this sequence successfully identified filamentous bacteria with the morphological features of Type 1851 in activated sludge samples from plants in several countries and different operational configurations.  相似文献   

5.
The methyltransferase fibrillarin is the catalytic component of ribonucleoprotein complexes that direct site-specific methylation of precursor ribosomal RNA and are critical for ribosome biogenesis in eukaryotes and archaea. Here we report the crystal structure of a fibrillarin ortholog from the hyperthermophilic archaeon Pyrococcus furiosus at 1.97A resolution. Comparisons of the X-ray structures of fibrillarin orthologs from Methanococcus jannashii and Archaeoglobus fulgidus reveal nearly identical backbone configurations for the catalytic C-terminal domain with the exception of a unique loop conformation at the S-adenosyl-l-methionine (AdoMet) binding pocket in P. furiosus. In contrast, the N-terminal domains are divergent which may explain why some forms of fibrillarin apparently homodimerize (M. jannashii) while others are monomeric (P. furiosus and A. fulgidus). Three positively charged amino acids surround the AdoMet-binding site and sequence analysis indicates that this is a conserved feature of both eukaryotic and archaeal fibrillarins. We discuss the possibility that these basic residues of fibrillarin are important for RNA-guided rRNA methylation.  相似文献   

6.
The gene encoding putative aminoacylase (ORF: PH0722) in the genome sequence of a hyperthermophilic archaeon, Pyrococcus horikoshii, was cloned and overexpressed in Escherichia coli. The recombinant enzyme was determined to be thermostable aminoacylase (PhoACY), forming a homotetramer. Purified PhoACY showed the ability to release amino acid molecules from the substrates N-acetyl-L-Met, N-acetyl-L-Gln and N-acetyl-L-Leu, but had a lower hydrolytic activity towards N-acetyl-L-Phe. The kinetic parameters K(m) and k(cat) were determined to be 24.6 mm and 370 s(-1), respectively, for N-acetyl-l-Met at 90 degrees C. Purified PhoACY contained one zinc atom per subunit. EDTA treatment resulted in the loss of PhoACY activity. Enzyme activity was fully recovered by the addition of divalent metal ions (Zn(2+), Mn(2+) and Ni(2+)), and Mn(2+) addition caused an alteration in substrate specificity. Site-directed mutagenesis analysis and structural modeling of PhoACY, based on Arabidopsis thaliana indole-3-acetic acid amino acid hydrolase as a template, revealed that, amongst the amino acid residues conserved in PhoACY, His106, Glu139, Glu140 and His164 were related to the metal-binding sites critical for the expression of enzyme activity. Other residues, His198 and Arg260, were also found to be involved in the catalytic reaction, suggesting that PhoACY obeys a similar reaction mechanism to that proposed for mammalian aminoacylases.  相似文献   

7.
和致中 《生命科学》2000,12(4):189-193
本文述及Pyrococcus furiosus的丙酮酸代谢、麦芽糖发酵(高温糖酵解途径)、由丙酮酸糖原异生途径、还原性末端产物--L-丙氨酸的形成和钨对代谢类型的影响等。  相似文献   

8.
Two straight-chain fatty alcohols (n-hexadecanol and n-octadecanol) were found in the neutral lipid fraction extracted from Pyrococcus furiosus cells. They were identified by thin-layer and gas-liquid chromatography, mass and infrared spectra, and chemical modification. The fatty alcohols accounted for 54% of the neutral lipid of the cell. Received: March 8, 2000 / Accepted: May 8, 2000  相似文献   

9.
Pyrococcus furiosus uses a modified Embden-Meyerhof pathway involving two ADP-dependent kinases. Using the N-terminal amino acid sequence of the previously purified ADP-dependent glucokinase, the corresponding gene as well as a related open reading frame were detected in the genome of P. furiosus. Both genes were successfully cloned and expressed in Escherichia coli, yielding highly thermoactive ADP-dependent glucokinase and phosphofructokinase. The deduced amino acid sequences of both kinases were 21.1% identical but did not reveal significant homology with those of other known sugar kinases. The ADP-dependent phosphofructokinase was purified and characterized. The oxygen-stable protein had a native molecular mass of approximately 180 kDa and was composed of four identical 52-kDa subunits. It had a specific activity of 88 units/mg at 50 degrees C and a pH optimum of 6.5. As phosphoryl group donor, ADP could be replaced by GDP, ATP, and GTP to a limited extent. The K(m) values for fructose 6-phosphate and ADP were 2.3 and 0.11 mM, respectively. The phosphofructokinase did not catalyze the reverse reaction, nor was it regulated by any of the known allosteric modulators of ATP-dependent phosphofructokinases. ATP and AMP were identified as competitive inhibitors of the phosphofructokinase, raising the K(m) for ADP to 0.34 and 0.41 mM, respectively.  相似文献   

10.
Aminoacylase was identified in cell extracts of the hyperthermophilic archaeon Pyrococcus furiosus by its ability to hydrolyze N-acetyl-L-methionine and was purified by multistep chromatography. The enzyme is a homotetramer (42.06 kDa per subunit) and, as purified, contains 1.0 +/- 0.48 g-atoms of zinc per subunit. Treatment of the purified enzyme with EDTA resulted in complete loss of activity. This was restored to 86% of the original value (200 U/mg) by treatment with ZnCl(2) (and to 74% by the addition of CoCl(2)). After reconstitution with ZnCl(2), the enzyme contained 2.85 +/- 0.48 g-atoms of zinc per subunit. Aminoacylase showed broad substrate specificity and hydrolyzed nonpolar N-acylated L amino acids (Met, Ala, Val, and Leu), as well as N-formyl-L-methionine. The high K(m) values for these compounds indicate that the enzyme plays a role in the metabolism of protein growth substrates rather than in the degradation of cellular proteins. Maximal aminoacylase activity with N-acetyl-L-methionine as the substrate occurred at pH 6.5 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified aminoacylase was used to identify, in the P. furiosus genome database, a gene that encodes 383 amino acids. The gene was cloned and expressed in Escherichia coli by using two approaches. One involved the T7 lac promoter system, in which the recombinant protein was expressed as inclusion bodies. The second approach used the Trx fusion system, and this produced soluble but inactive recombinant protein. Renaturation and reconstitution experiments with Zn(2+) ions failed to produce catalytically active protein. A survey of databases showed that, in general, organisms that contain a homolog of the P. furiosus aminoacylase (> or = 50% sequence identity) utilize peptide growth substrates, whereas those that do not contain the enzyme are not known to be proteolytic, suggesting a role for the enzyme in primary catabolism.  相似文献   

11.
Extremophiles - The gene-encoding Indole-3-glycerol phosphate synthase, a key enzyme involved in the cyclization of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate, from Pyrococcus furiosus...  相似文献   

12.
The hyperthermophilic archaebacterium Pyrococcus furiosus contains high levels of NAD(P)-dependent glutamate dehydrogenase activity. The enzyme could be involved in the first step of nitrogen metabolism, catalyzing the conversion of 2-oxoglutarate and ammonia to glutamate. The enzyme, purified to homogeneity, is a hexamer of 290 kDa (subunit mass 48 kDa). Isoelectric-focusing analysis of the purified enzyme showed a pI of 4.5. The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate but utilizes both NADH and NADPH as cofactors. The purified enzyme reveals an outstanding thermal stability (the half-life for thermal inactivation at 100 degrees C was 12 h), totally independent of enzyme concentration. P. furiosus glutamate dehydrogenase represents 20% of the total protein; this elevated concentration raises questions about the roles of this enzyme in the metabolism of P. furiosus.  相似文献   

13.
14.
15.
Roy R  Adams MW 《Journal of bacteriology》2002,184(24):6952-6956
Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism.  相似文献   

16.
Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis in the domain Eucarya. The function of RFC is to load PCNA, a processivity factor of eukaryotic DNA polymerases delta and epsilon, onto primed DNA templates. RFC-like genes, arranged in tandem in the Pyrococcus furiosus genome, were cloned and expressed individually in Escherichia coli cells to determine their roles in DNA synthesis. The P. furiosus RFC (PfuRFC) consists of a small subunit (RFCS) and a large subunit (RFCL). Highly purified RFCS possesses an ATPase activity, which was stimulated up to twofold in the presence of both single-stranded DNA (ssDNA) and P. furiosus PCNA (PfuPCNA). The ATPase activity of PfuRFC itself was as strong as that of RFCS. However, in the presence of PfuPCNA and ssDNA, PfuRFC exhibited a 10-fold increase in ATPase activity under the same conditions. RFCL formed very large complexes by itself and had an extremely weak ATPase activity, which was not stimulated by PfuPCNA and DNA. The PfuRFC stimulated PfuPCNA-dependent DNA synthesis by both polymerase I and polymerase II from P. furiosus. We propose that PfuRFC is required for efficient loading of PfuPCNA and that the role of RFC in processive DNA synthesis is conserved in Archaea and Eucarya.  相似文献   

17.
The structure of Pyrococcus furiosus carboxypeptidase (PfuCP) has been determined to 2.2 A resolution using multiwavelength anomalous diffraction (MAD) methods. PfuCP represents the first structure of the new M32 family of carboxypeptidases. The overall structure is comprised of a homodimer. Each subunit is mostly helical with its most pronounced feature being a deep substrate binding groove. The active site lies at the bottom of this groove and contains an HEXXH motif that coordinates the metal ion required for catalysis. Surprisingly, the structure is similar to the recently reported rat neurolysin. Comparison of these structures as well as sequence analyses with other homologous proteins reveal several conserved residues. The roles for these conserved residues in the catalytic mechanism are inferred based on modeling and their location.  相似文献   

18.
A ferritin from the obligate anaerobe and hyperthermophilic archaeon Pyrococcus furiosus (optimal growth at 100°C) has been cloned and overproduced in Escherichia coli to one-fourth of total cell-free extract protein, and has been purified in one step to homogeneity. The ferritin (PfFtn) is structurally similar to known bacterial and eukaryal ferritins; it is a 24-mer of 20 kDa subunits, which add up to a total Mr 480 kDa. The protein belongs to the non-heme type of ferritins. The 24-mer contains approximately 17 Fe (as isolated), 2,700 Fe (fully loaded), or <1 Fe (apoprotein). Fe-loaded protein exhibits an EPR spectrum characteristic for superparamagnetic core formation. At 25°C Vmax=25 mole core Fe3+ formed per min per mg protein when measured at 315 nm, and the K0.5=5 mM Fe(II). At 0.3 mM Fe(II) activity increases 100-fold from 25 to 85°C. The wild-type ferritin is detected in P. furiosus grown on starch. PfFtn is extremely thermostable; its activity has a half-life of 48 h at 100°C and 85 min at 120°C. No apparent melting temperature was found up to 120°C. The extreme thermostability of PfFtn has potential value for biotechnological applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号