首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation inactivation analysis gave the target sizes of 176 +/- 5 kDa and 275 +/- 33 kDa for ATPase from anaerobic Lactobacillus casei and aerobic Micrococcus luteus bacteria respectively. The values are close to the known molecular masses of the enzymes. Thus, to function the L. casei ATPase, like the F1-ATPases, requires a complete structure composed of all the enzyme subunits. L. casei ATPase is inhibited by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole owing to modification of an amino acid residue(s) with pK greater than 8.5. L. casei ATPase consists of six identical subunits and differs from alpha 3 beta 3 gamma delta epsilon-type F1-ATPases in a number of catalytic properties. Namely, ATP hydrolysis under the 'unisite' conditions proceeds at a relatively high rate suggesting the absence of cooperative interactions between the catalytic sites. Contrary to mitochondrial F1-ATPase. L. casei ATPase does not form an inactive complex with ADP. These findings imply essential differences in the operating mechanism for L. casei ATPase and F1 ATPase.  相似文献   

2.
The H+-ATPase complex has been isolated from the membranes of the anaerobic bacterium Lactobacillus casei by two independent methods. 1. The crossed-immunoelectrophoresis of the 14C-labelled ATPase complex against antibodies to a highly purified soluble ATPase has been used. The subunit composition of the complex has been established by autoradiography. The soluble part of L. casei ATPase, in contrast to coupling factor F1-ATPases of aerobic bacteria, chloroplasts and mitochondria which include two kinds of large subunit (alpha and beta), consists of one kind of large subunit with a molecular mass of 43 kDa. Moreover, a minor polypeptide of 25 kDa has been found in the soluble ATPase. Factor F0 of L. casei ATPase complex consists of a 16-kDa subunit and two subunits with molecular masses less than 14 kDa. 2. A dicyclohexylcarbodiimide-sensitive ATPase complex has been isolated from L. casei membranes by treating them with a mixture of octyl glucoside and sodium cholate. The complex, purified by centrifugation on a sucrose density gradient, contains the main subunits with molecular masses of 43 kDa, 25 kDa and 16 kDa and a dicyclohexylcarbodiimide-binding subunit with a molecular mass less than 14 kDa.  相似文献   

3.
The nucleotide sequence of the operon of the ATPase complex of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, has been determined. In addition to the three previously reported genes for the alpha, beta, and c (proteolipid) subunits of the ATPase complex (Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 7119-7121), the operon contained three other genes encoding hydrophilic proteins with molecular masses 25, 13, and 7 kDa. The 25-kDa protein is the third largest subunit (gamma), the 13-kDa protein is most likely the fourth subunit (delta), and the 7-kDa protein may correspond to an unknown subunit of the ATPase, tentatively named as epsilon subunit. They do not have significant sequence similarity to subunits in F0F1-ATPases and eukaryotic V-type ATPases, whereas the other three subunits, alpha, beta, and c, have homologous counterparts in F0F1- and V-type ATPases. The order of the genes in the operon was delta alpha beta gamma epsilon c. The S. acidocaldarius ATPase operon differed from the eucabacterial F0F1-ATPase operon in that the former contains only one gene for a hydrophobic subunit at the most downstream part of the operon whereas the latter has three hydrophobic F0 genes preceding five hydrophilic F1 genes.  相似文献   

4.
The preparation of highly purified F1-ATPase from Micrococcus sp. ATCC 398 by application of DEAE-Sepharose CL-6B chromatography as final step is described. This enzyme consists of five subunits of different molecular weight: alpha (65000), beta (55000),gamma (35000), delta (20000), and epsilon (17000). Disc electrophoresis on 5% polyacrylamide gels removes the epsilon-polypeptide yielding an active ATPase complex with four different subunits: alpha, beta, gamma, delta. Additionally, by variation of the ionic strength delta can (partly) removed allowing the isolation by disc electrophoresis of an active ATPase complex which consists only of three different subunits alpha, beta, and gamma. If the DEAE-Sepharose chromatography is carried out in the absence of diisopropyl phosphofluoridate (auto)proteolysis yields both an active ATPase with the subunits alpha+ (mol. wt 61000), beta, gamma, and delta and an inactive protein complex with the subunits alpha+, beta, gamma, delta, and two additional polypeptides a (mol. wt 38000) and b (mol. wt 23000). The latter two polypeptides are supposedly fragments of alpha+-chains which have become partially cleaved by (auto)proteolysis.  相似文献   

5.
Mitochondrial F1-ATPase was purified from the mycelium of Phycomyces blakesleeanus NRRL 1555(-) and its kinetic characteristics were studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme reveals five bands (alpha, beta, gamma, delta, and epsilon) characteristic of the F1 portion with apparent molecular weights of 60,000, 53,000, 31,000, 25,000, and 21,000, respectively. The molecular weight of the native F1-ATPase from Phycomyces blakesleeanus was in agreement with the stoichiometry alpha 3 beta 3 gamma delta epsilon. The MgATP complex is the true substrate for ATPase activity which has a Km value of 0.15 mM. High concentrations of free ATP or free Mg2+ ions inhibit the ATPase activity. ADP appears to act as a negative allosteric effector with regard to MgATP hydrolysis, with the apparent Vmax remaining unchanged.  相似文献   

6.
Monoclonal antibodies (mAbs) have been made against each of the five subunits of ECF1 (alpha, beta, gamma, delta, and epsilon), and these have been used in topology studies and for examination of the role of individual subunits in the functioning of the enzyme. All of the mAbs obtained reacted with ECF1, while several failed to react with ECF1F0, including three mAbs against the gamma subunit (gamma II, gamma III, and gamma IV), one mAb against delta, and two mAbs against epsilon (epsilon I and epsilon II). These topology data are consistent with the gamma, delta, and epsilon subunits being located at the interface between the F1 and F0 parts of the complex. Two forms of ECF1 were used to study the effects of mAbs on the ATPase activity of the enzyme: ECF1 with the epsilon subunit tightly bound and acting to inhibit activity and ECF1* in which the delta and epsilon subunits had been removed by organic solvent treatment. ECF1* had an ATPase activity under standard conditions of 93 mumol of ATP hydrolyzed min-1 mg-1, cf. an activity of 7.5 units mg-1 for our standard ECF1 preparation and 64 units mg-1 for enzyme in which the epsilon subunit had been removed by trypsin treatment. The protease digestion of ECF1* reduced activity to 64 units mg-1 in a complicated process involving an inhibition of activity by cleavage of the alpha subunit, activation by cleavage of gamma, and inhibition with cleavage of the beta subunit. mAbs to the gamma subunit, gamma II and gamma III, activated ECF1 by 4.4- and 2.4-fold, respectively, by changing the affinity of the enzyme for the epsilon subunit, as evidenced by density gradient centrifugation experiments. The gamma-subunit mAbs did not alter the ATPase activity of ECF1*- or trypsin-treated enzyme. The alpha-subunit mAb (alpha I) activated ECF1 by a factor of 2.5-fold and ECF1F0 by 1.3-fold, but inhibited the ATPase activity of ECF1* by 30%.  相似文献   

7.
1. Five subunits (alpha, beta, gamma, delta, and epsilon) of an ATPase from a thermophilic bacterium PS3 were purified in the presence of 8 M urea by ion exchange chromatography. Then the ATPase activity was reconstituted by mixing the subunit solutions and incubating them at 20-45 degrees, at pH 6.3 to 7.0. 2. Mixtures containing beta + gamma or alpha + beta + delta regained ATP-hydrolyzing activity, but mixtures of alpha + beta and beta + delta did not. Combinations not including beta were all inactive. 3. The ATPase activity reconstituted from alpha + beta + delta was thermolabile and insensitive to NaN3, whereas the activities obtained from mixtures containing beta and gamma were thermostable and sensitive to NaN3, like the native ATPase. 4. The assemblies containing both beta and gamma subunits had the same mobility as the native ATPase molecule on gel electrophoresis, those without the gamma subunit moved more rapidly toward the anode. 5. Subunits epsilon and delta did not inhibit the ATPase activity of either the assembly (alpha + beta + gamma) or the native ATPase.  相似文献   

8.
A procedure for the preparation of coupling factor 1 (F1) from Escherichia coli lacking subunits delta and epsilon is described. Using chloroform and dimethyl sulfoxide, we can isolate F1 containing only subunits alpha, beta, and gamma [F1(alpha beta gamma)] directly from membrane vesicles in 10-mg quantities. Pure and active subunits delta and epsilon were prepared from five-subunit F1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After addition of these subunits, F1(alpha beta gamma) is as active in reconstituting ATP-dependent transhydrogenase as five-subunit F1. The ATPase activity of F1 (alpha beta gamma) is inhibited by subunit epsilon in a 1:1 stoichiometry to the same extent (approximately equal to 90%) and with the same affinity (Ki = 0.2-0.8 nM) as reported earlier [Dunn, S.D. (1982) J. Biol. Chem. 257, 7354-7359]. In the presence of either delta or epsilon, F1(alpha beta gamma) binds to F1-depleted membrane vesicles and to liposomes containing the membrane sector (F0) of the ATP synthase to an extent commensurate with the F0 content. The binding ratios epsilon/F1 (alpha beta gamma) and probably also delta/F1 (alpha beta gamma) are close to unity. The specific, delta- or epsilon-deficient F1.F0 complexes presumably formed show ATPase activities sensitive to subunit epsilon but not to dicyclohexylcarbodiimide, and no energy-transfer capabilities. Binding studies at different pH values suggest that F1-F0 interactions in the presence of both subunits delta and epsilon are similar to a combination of those mediated by delta or epsilon alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
ATPase was purified 51-fold from a chemoautotrophic, obligately acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. The purified ATPase showed the typical subunit pattern of the F1-ATPase on a polyacrylamide gel containing sodium dodecyl sulfate, with 5 subunits of apparent molecular masses of 55, 50, 33, 20, and 18 kDa. The enzyme hydrolyzed ATP, GTP, and ITP, but neither UTP nor ADP. The K(m) value for ATP was 1.8 mM. ATPase activity was optimum at pH 8.5 at 45 degrees C, and was activated by sulfite. Azide strongly inhibited the enzyme activity, whereas the enzyme was relatively resistant to vanadate, nitrate, and N,N'-dicyclohexylcarbodiimide. The genes encoding the subunits for the F1F(O)-ATPase from A. ferrooxidans NASF-1 were cloned as three overlapping fragments by PCR cloning and sequenced. The molecular masses of the alpha, beta, gamma, delta, and epsilon subunits of the F1 portion were deduced from the amino acid sequences to be 55.5, 50.5, 33.1, 19.2, and 15.1 kDa, respectively.  相似文献   

10.
F0F1-ATPase of plant mitochondria: isolation and polypeptide composition   总被引:1,自引:0,他引:1  
A simple and high yield purification procedure for the isolation of F0F1-ATPase from spinach leaf mitochondria has been developed. This is the first report concerning purification and composition of the plant mitochondrial F0F1-ATPase. The enzyme is selectively extracted from inner membrane vesicles with the zwitterionic detergent, 3-[(3-cholamidopropyl) dimethyl ammonio]-1- propane sulfonate (CHAPS). The purified enzyme exhibits a high oligomycin-sensitive ATPase activity (3,6 mumol.min-1.mg-1). SDS-PAGE of the purified F0F1-ATPase complex reveals protein bands of molecular masses of 54 kDa (F1 alpha,beta), 33 kDa (F1 gamma), 28 kDa, 23 kDa, 21 kDa (F1 delta), 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa (F1 epsilon) and 8.5 kDa. All polypeptides migrate as one complex in a polyacrylamide gradient gel under non-denaturing conditions in the presence of 0.1% Triton X-100. Five polypeptides could be identified as subunits of F1. Polypeptides of molecular masses 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa constitute the F0 part of the complex. Our results show that polypeptide composition of the plant mitochondrial F0 differs from other eukaryotic F0 of yeast, mammals and chloroplasts.  相似文献   

11.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Iron oxidase was purified from plasma membranes of a moderately thermophilic iron oxidizing bacterium strain TI-1 in an electrophoretically homogeneous state. Spectrum analyses of purified enzyme showed the existence of cytochrome a, but not cytochrome b and c types. Iron oxidase was composed of five subunits with apparent molecular masses of 46 kDa (alpha), 28 kDa (beta), 24 kDa (gamma), 20 kDa (delta), and 17 kDa (epsilon). As the molecular mass of a native enzyme was estimated to be 263 kDa in the presence of 0.1% n-dodecyl-beta-D-maltopyranoside (DM), a native iron oxidase purified from strain TI-1 seems to be a homodimeric enzyme (alpha beta gamma delta epsilon)(2). Optimum pH and temperature for iron oxidation were pH 3.0 and 45 degrees C, respectively. The K(m) of iron oxidase for Fe(2+) was 1.06 mM and V(max) for O(2) uptake was 13.8 micromol x mg(-1) x min(-1). The activity was strongly inhibited by cyanide and azide. Purified enzyme from strain TI-1 is a new iron oxidase in which electrons of Fe(2+) were transferred to haem a and then to the molecular oxygen.  相似文献   

13.
The coupling factor, F1-ATPase of Escherichia coli (ECF1) contains five different subunits, alpha, beta, gamma, delta, and epsilon. Properties of delta-deficient ECF1 have previously been described. F1-ATPase containing only the alpha, beta, and gamma subunits was prepared from E. coli by passage of delta-deficient ECF1 through an affinity column containing immobilized antibodies to the epsilon subunit. The delta, epsilon-deficient enzyme has normal ATPase activity but cannot bind to ECF1-depleted membrane vesicles. Both the delta and epsilon subunits are required for the binding of delta, epsilon-deficient ECF1 to membranes and the restoration of oxidative phosphorylation. Either delta or epsilon will bind to the deficient enzyme to form a four-subunit complex. Neither four-subunit enzyme binds to depleted membranes. The epsilon subunit, does, however, slightly improve the binding affinity between delta and delta-deficient enzyme suggesting a possible interaction between the two subunits. Neither subunit binds to trypsin-treated ECF1, which contains only the alpha and beta subunits. A role for gamma in the binding of epsilon to F1 is suggested. epsilon does not bind to ECF1-depleted membranes. Therefore, the in vitro reconstitution of depleted membranes requires an initial complex formation between epsilon and the rest of ECF1 prior to membrane attachment. Reconstitution experiments indicate that only one epsilon is required per functional ECF1 molecule.  相似文献   

14.
Trypsin cleavage has been used to probe structure-function relationships of the Escherichia coli ATP synthase (ECF1F0). Trypsin cleaved all five subunits, alpha, beta, gamma, delta, and epsilon, in isolated ECF1. Cleavage of the alpha subunit involved the removal of the N-terminal 15 residues, the beta subunit was cleaved near the C-terminus, the gamma subunit was cleaved near Ser202, and the delta and epsilon subunits appeared to be cleaved at several sites to yield small peptide fragments. Trypsin cleavage of ECF1 enhanced the ATPase activity between 6- and 8-fold in different preparations, in a time course that followed the cleavage of the epsilon subunit. This removal of the epsilon subunit increased multisite ATPase activity but not unisite ATPase activity, showing that the inhibitory role of the epsilon subunit is due to an effect on cooperativity. The detergent lauryldimethylamine oxide was found to increase multisite catalysis and also increase unisite catalysis more than 2-fold. Prolonged trypsin cleavage left a highly active ATPase containing only the alpha and beta subunits along with two fragments of the gamma subunit. All of the subunits of ECF1 were cleaved by trypsin in preparations of ECF1F0 at the same sites as in isolated ECF1. Two subunits, the beta and epsilon subunits, were cleaved at the same rate in ECF1F0 as in ECF1 alone. The alpha, gamma, and delta subunits were cleaved significantly more slowly in ECF1F0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Cysteine residues have been exchanged for serine residues at positions 10 and 108 in the epsilon subunit of the Escherichia coli F1 ATPase by site-directed mutagenesis to create two mutants, epsilon-S10C and epsilon-S108C. These two mutants and wild-type enzyme were reacted with [14C]N-ethylmaleimide (NEM) to examine the solvent accessibility of Cys residues and with novel photoactivated cross-linkers, tetrafluorophenyl azide-maleimides (TFPAM's), to examine near-neighbor relationships of subunits. In native wild-type F1 ATPase, NEM reacted with alpha subunits at a maximal level of 1 mol/mol of enzyme (1 mol/3 alpha subunits) and with the delta subunit at 1 mol/mol of enzyme; other subunits were not labeled by the reagent. In the mutants epsilon-S10C and epsilon-S108C, Cys10 and Cys108, respectively, were also labeled by NEM, indicating that these are surface residues. Reaction of wild-type enzyme with TFPAM's gave cross-linking of the delta subunit to both alpha and beta subunits. Reaction of the mutants with TFPAM's also cross-linked delta to alpha and beta and in addition formed covalent links between Cys10 of the epsilon subunit and the gamma subunit and between Cys108 of the epsilon subunit and the alpha subunit. The yield of cross-linking between sites on epsilon and other subunits depended on the nucleotide conditions used; this was not the case for delta-alpha or delta-beta cross-linked products. In the presence of ATP+EDTA the yield of cross-linking between epsilon-Cys10 and gamma was high (close to 50%) while the yield of epsilon-Cys108 and alpha was low (around 10%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A modified procedure for the purification of soluble ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius is described. In addition to (alpha) 65 and (beta) 51 kDa polypeptides, further subunits gamma * (20 kDa) and delta * (12 kDa) are demonstrated to be components of the enzyme, exhibiting a total molecular mass of 380 kDa. Molecular electron microscopic images of the native enzyme indicate a quaternary structure probably formed by the gamma *, delta *-complex as a central mass surrounded by a pseudohexagon of the peripherally arranged larger alpha and beta subunits. As can be derived from both molecular mass and electron microscopy data, the archaebacterial Sulfolobus-ATPase emerges to exist as an alpha 3 beta 3-quaternary structure with respect to the larger subunits. This is normally found in typical F1-ATPases of eubacterial and eukaryotic organisms. Therefore it is postulated that F1- and F0F1-ATPases, respectively, can occur ubiquitously in all urkingdoms of organisms as functional units of energy-transducing membranes.  相似文献   

18.
1. The F1-ATPase from the plasma membrane of Streptococcus cremoris HA was released by low ionic shock wash and purified by gel filtration and ion exchange chromatography. 2. The specific activity of the purified F1-ATPase was 25.8 mumol Pi/mg protein/min. 3. Km for ATP was 0.80 mM, and Ki for ADP as a competetive inhibitor 0.40 mM. 4. The purified F1-ATPase consisted of five subunits, alpha, beta, gamma, delta and epsilon, with molecular masses of 47.0, 45.0, 29.5, 22.0 and 13.0 kDa, respectively. 5. The isoelectric point of the enzyme complex was found to be 4.4.  相似文献   

19.
Previously we reported that ATPase activity was recovered when the subunit alpha + beta + gamma or alpha + beta + delta of the F1-ATPase from the thermophilic bacterium PS3 were combined under appropriate conditions. Unlike that of holoenzyme (TF1) and the alpha + beta + gamma mixture, ATPase activity of the alpha + beta + delta mixture was heat labile and insensitive to azide inhibition (Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1977) J. Biol. Chem. 252, 3480-3485). Here, the properties of purified subunit complexes were compared in detail with those of native TF1. The subunit stoichiometries of the complexes were determined to be alpha 3 beta 3 gamma 1 and alpha 3 beta 3 delta 1. In general, the properties of the alpha 3 beta 3 gamma complex are very similar to those of TF1, whereas those of the alpha 3 beta 3 delta complex are significantly different. ATPase activity of the alpha 3 beta 3 delta complex is cold labile. The alpha 3 beta 3 delta complex showed a less stringent specificity for substrate and divalent cation than TF1 and the alpha 3 beta 3 gamma complex. Two Km values for ATP were exhibited by the alpha 3 beta 3 delta complex with the lower one being in the range of 0.1 microM. Equilibrium dialysis experiments revealed that the alpha 3 beta 3 delta complex cannot specifically bind ADP in the absence of Mg2+, while TF1 and the alpha 3 beta 3 gamma complex bind about 1 and 3 mol of ADP/mol of enzyme, respectively. ADP-dependent inactivation of the alpha 3 beta 3 delta complex by dicyclohexylcarbodiimide was not observed. The alpha 3 beta 3 gamma complex was readily formed when the gamma subunit was added to the alpha 3 beta 3 delta complex, suggesting that the alpha 3 beta 3 delta complex is not a "dead-end" complex. The cause of thermolability of the alpha 3 beta 3 delta complex appears to be the low stability of the complex itself at high temperature and not due to an unusually low thermostability of the delta subunit.  相似文献   

20.
The ATP-hydrolyzing activity of Propionigenium modestum was extracted from the membranes with Triton X-100 or by incubation with EDTA at low ionic strength. The ATPase in the Triton extract was highly sensitive to dicyclohexylcarbodiimide but not to vanadate. These properties are characteristic for enzymes of the F1 F0 type. The ATPase was specifically activated by Na+ ions yielding a 15-fold increase in catalytic activity at 5 mM Na+ concentration. The additional presence of 1% Triton X-100 caused a further 1.5-fold activation. In the absence of Na+ Triton stimulated the ATPase about 13-fold. The Triton-stimulated ATPase was further activated about 1.5-2-fold by Na+ addition. The ATPase extracted by the low-ionic-strength treatment was purified to homogeneity by fractionation with poly(ethylene glycol) and gel chromatography. The enzyme had the characteristic F1-ATPase subunit structure with Mr values of 58,000 (alpha), 56,000 (beta), 37,600 (gamma), 22,700 (delta), and 14,000 (epsilon). The F1-ATPase was not stimulated by Na+ ions. The membrane-bound ATPase was reconstituted from the purified F1 part and F1-depleted membranes, thus further indicating an F1 F0 structure for the ATPase of P. modestum. Upon reconstitution the ATPase recovered its stimulation by Na+ ions, suggesting that the binding site for Na+ is localized on the membrane-bound F0 part of the enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号