首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
嗅球对嗅觉信息的处理   总被引:2,自引:0,他引:2  
哺乳动物的嗅觉系统拥有惊人的能力,它可以识别和分辨成千上万种分子结构各异的气味分子。这种识别能力是由基因决定的。近年来,分子生物学和神经生理学的研究使得我们对嗅觉识别的分子基础和嗅觉系统神经连接的认识有了质的飞跃。气味分子的识别是由一千多种气味受体完成的,鼻腔中的嗅觉感觉神经元表达这些气味受体基因。每个感觉神经元只表达一种气味受体基因。表达同种气味受体的感觉神经元投射到嗅球表面的一个或几个嗅小球中,从而在嗅球中形成一个精确的二维连接图谱。了解嗅球对气味信息的加工和处理方式是我们研究嗅觉系统信号编码的一个重要环节。文章概述并总结了有关嗅球信号处理的最新研究成果。  相似文献   

2.
大多数昆虫主要通过气味认知感知外界环境的变化,维持生命活动。探究昆虫气味认知的嗅觉系统神经结构及分子机制,对于完善气味认知神经生物学理论及利用其原理进行仿生学研究等有重要的科学意义。近年,关于昆虫气味认知科学研究有了很大的进展。本文从昆虫神经生物学的视角详细综述了近年关于昆虫气味认知的嗅觉神经结构、分子机制及气味信号的神经传导途径等方面的基本理论及最新研究成果。综述结果显示:昆虫对气味的认知是通过嗅觉神经系统的触角感器、触角叶(AL)、蕈形体(MB)等脑内多层信号处理神经结构来实现的。当外界气味分子进入触角感器内后,由感器内特定的气味识别蛋白(OBP)将气味分子运载到达嗅觉感受神经元(ORN)树突膜上的受体位点,气味分子与表达特定气味的受体(OR)结合产生电信号,并以动作电位的形式通过ORN的轴突传到脑内的触角叶。在触角叶经过嗅觉纤维球对气味信息选择性加工处理,再由投射神经元(PNs)将初步的识别和分类的气味信息传到蕈形体和外侧角(LH)等神经中枢,实现对气味的识别和认知。虽然,近年昆虫气味认知神经生物学的研究有了很大的进步,但是,我们认为目前的研究成果还不能完全阐明昆虫气味认知的神经机制,还有很多问题,例如,触角叶上众多的嗅觉纤维球是如何对嗅觉感受神经元传入的气味信息进行编码处理的?等有待进一步深入研究。为了搞清这些疑难问题,我们认为需要提高现有的实验技术水平,加强电生理学和分子神经生物学相结合的实验研究,从分子水平探究气味认知的神经机制可能是未来研究的热点。  相似文献   

3.
嗅觉之谜--2004年诺贝尔生理学或医学奖简介   总被引:1,自引:0,他引:1  
瑞典卡罗林斯卡医学院于 2 0 0 4年 10月 4日宣布 ,将本年度诺贝尔生理学或医学奖授予美国科学家理查德·阿克赛尔 (RichardAxel)和琳达·巴克(LindaB .Buck) ,以分别表彰他们在气味受体 (odor antreceptors)和嗅觉系统 (olfactorysystem )组织方式研究中作出的杰出贡献[1] 。人的嗅觉粘膜中约有 5百万个嗅觉神经元。每一个嗅觉神经元至少有 10条细微的纤毛浸泡到细胞表面的薄层粘液中。科学家们相信 ,在这些纤毛中有识别并能结合气味分子的受体蛋白 ,从而刺激转换成神经冲动 (信号 )。当气味激活一个神经元时 ,信号便沿着神经细胞轴突而…  相似文献   

4.
果蝇嗅觉分子机理研究进展   总被引:2,自引:0,他引:2  
黑腹果蝇Drosophila melanogaster是生物学研究的重要模式生物,也是探索研究生物体嗅觉奥秘的理想材料。近年来,由于分子生物学技术在神经科学领域的广泛应用,黑腹果蝇嗅觉机理研究取得了许多重大突破, 对气味分子受体及其识别机理、 嗅觉神经电信号的产生和传递、嗅觉信息的加工、编码以及记忆等方面都有了深入的了解。研究表明, 果蝇约1 300个嗅神经元(olfactory receptor neurons, ORNs)共表达62种不同的气味受体蛋白(olfactory receptor proteins, ORs), 用以检测和识别其所感受的所有化学气味分子。许多OR所识别的气味分子配体已鉴定出来,普通的气味(如水果的气味)由数种不同的OR组合来识别,而信息素(pheromone)分子则由单种特定的OR来检测。气味信息在嗅神经元内转换成神经电信号,嗅觉电信号沿嗅神经元的轴突传递到触角叶, 再经投射神经元(projection neurons, PNs)将信息送至高级中枢如蘑菇体(mushroom body, MB)和侧角(lateral horn, LH),最终引发行为反应。在黑腹果蝇嗅觉信息传递通路中,某些蛋白如Dock,N-cadherin,Fruitless等起着重要作用,缺失这些蛋白会导致嗅觉异常。本文对这些研究进展作一综述。  相似文献   

5.
蚊虫搜寻吸血寄主和产卵行为的调节因子及相关嗅觉机理   总被引:1,自引:0,他引:1  
杜永均  吴仲南 《昆虫学报》2007,50(10):1060-1069
嗅觉在蚊虫的吸血寄主搜寻、产卵和糖源搜寻行为中起决定作用,而在交配行为中的作用并不清楚。本文系统全面地综述了近20年来蚊虫化学生态学和嗅觉识别的分子机理的研究。蚊虫的触角、下颚须和口喙上的嗅觉感器感觉环境中释放的各种挥发性化合物。气味分子与嗅觉气味结合蛋白和气味受体的结合所启动的一系列生化反应产生神经动作电位。蚊虫嗅觉神经元编码气味中化合物的组成、浓度及其暂时瞬间的浓度变化和空间分布。吸血前后神经元的活性在数量和质量上有变化,反映了蚊虫在搜寻吸血寄主和产卵行为上的调节。在吸血寄主搜寻中,人体和动物释放的二氧化碳、乳酸以及其他气味协同引诱蚊虫向目标气味源定向飞行,最后找到吸血寄主。而成熟产卵雌蚊是利用产卵场所释放的腐烂气味寻找适宜的产卵场所,一些蚊虫卵、幼虫或蛹分泌的产卵信息素引诱和刺激雌蚊产卵,并与产卵生境气味起协同作用。植物气味尤其是花香味引诱蚊虫找到蜜源。驱避剂也是直接或间接通过嗅觉起作用,一些驱蚊剂由于阻断嗅觉反应而抑制蚊虫的定向飞行。从植物、动物或人体以及产卵场所释放的气味中有望找到有效的引诱和驱避化合物。对蚊虫嗅觉识别机理的认识将使我们开发出有效的蚊虫诱捕技术,进而应用于种群监测和控制。  相似文献   

6.
昆虫嗅觉神经的计算机三维重建   总被引:3,自引:2,他引:1  
基于激光扫描共聚焦显微镜平台的计算机三维重建在昆虫嗅觉神经研究中发挥了重要作用。对经荧光标记的神经组织采集系列光学切片并进行三维重建,在双翅目、鳞翅目、膜翅目、蜚蠊目昆虫中均有进展。触角叶是昆虫的初级嗅觉中心,触角叶的解剖学图谱是识别不同种和雌雄虫间嗅球体特定功能的先决条件。了解构成嗅觉传输途径的主要神经元的形态和空间关系是理解气味信息在中枢神经系统编码的基础。三维重建昆虫的嗅觉神经,对于探讨昆虫嗅觉在其寄主选择、觅食以及寻找配偶等行为中的作用具有非常重要的意义。  相似文献   

7.
啮齿动物的嗅觉通讯研究进展   总被引:6,自引:3,他引:6  
通过对近40 年来啮齿动物嗅觉通讯的研究综述, 主要介绍嗅觉信号的来源、组成及其对啮齿动物行为生理所产生的作用。啮齿动物嗅觉通讯的信号来源主要是粪便、尿液和特化皮肤腺等, 对这些化学信号的成分分析主要集中在各种信息素(Pheromone) 的结构、来源及其引起的行为反应。目前, 在对啮齿动物嗅觉通讯神经通路的研究中, 对主嗅觉系统和犁鼻器系统在动物嗅觉通讯中的作用仍将是人们研究的重点; 而通过信息素作用所产生的各种行为反应的神经内分泌机制也是动物嗅觉通讯领域研究的热点之一。研究气味信号对动物行为和生理等方面所产生的作用, 将有助于揭示啮齿动物嗅觉通讯在其社会行为中的重要作用。  相似文献   

8.
蚊虫主要依赖嗅觉系统与外界环境进行化学信息交流。蚊虫通过嗅觉感受系统寻找食物、 配偶和产卵场所, 进而做出相应的行为反应。本文综述了近年来蚊虫嗅觉系统对气味信号神经传导机制的研究进展。蚊虫的嗅觉感器主要位于触角和下颚须, 触角上的毛形感器和锥形感器感受氨水、 乳酸、 羧酸类化合物等人体和其他动物释放的微量气味物质, 下颚须上的锥形感器则感受呼出的二氧化碳以及一些其他的挥发性物质; 蚊虫嗅觉感器内部有受体神经细胞, 其上分布有嗅觉受体蛋白, 蚊虫对外界环境的化学感受就是通过气味物质与这些受体蛋白互作而得以实现; 根据对不同气味物质的反应谱差异, 嗅觉神经细胞被分为不同的功能类型; 来自嗅觉神经细胞的神经信号进一步从外周传导至中枢神经中脑触角叶内的神经小球, 在此对信息进行初步的处理, 通过评估嗅觉神经细胞的反应和触角叶内的神经小球相应被激活的区域, 不同小球被分别命名; 最后, 神经信号继续整合, 由投射神经传向前脑, 最终引发一系列昆虫行为反应。这些研究从理论上剖析了气味信号在蚊虫嗅觉系统中的神经转导通路, 对于我们深刻理解蚊虫的嗅觉系统具有重要意义, 同时也有助于进一步理解其他昆虫甚至人类的气味识别机制及进行更深层次神经科学的探索。  相似文献   

9.
生物体的嗅觉系统是一个化学感受器,它的受体蛋白类似于免疫球蛋白。在结构上有一个可变区和恒定区,从而能与不同分子构型的气味原起作用。嗅觉信息的传递也类似于视觉信息的传递,有一个 GTP—蛋白参与的串级放大作用。在嗅觉神经网络中颗粒细胞是一个中间抑制神经元。  相似文献   

10.
昆虫对宿主植物的嗅觉定向   总被引:3,自引:0,他引:3  
雷宏 《生物学通报》1995,30(3):9-11
在混虫辨别宿主植物所利用的各种信息中,植物的气味是一个很重要的因素昆虫利用触角上的嗅觉感受器来感觉植物气味。触角电位是昆虫的触角感受到植物气味后所产生的神经反应,而嗅觉编码则是嗅觉感受器将植物的气味信息传至神经中枢的脉冲系列。本文从行为生理学的角度介绍了昆虫利用植物气味寻找宿主植物的过程。  相似文献   

11.
人类可能会辨出近50万种不同的气味,但对于鼻腔深处发生的嗅觉的机制,仍在探索之中。以色列魏茨曼科学研究所的恩伯特·佩斯,伊曼纽尔·汉斯基等科学家对脊椎动物嗅觉机制的探索初见端倪。他们发现在做实验用的青蛙嗅纤毛中,腺苷酸环化酶的浓度非常高,当嗅纤毛受到4种不同气味的混合气体刺激时,该酶的活性增加了。科学家们认为,嗅觉敏感细胞对气味分子的反应似乎和细胞对激素的反应是相似的。他们在嗅纤毛中还发现一种和G-蛋白质大小和性质相同的蛋白质。所以,他们认为嗅觉的产生可能是以如下程序发生的:当有气味的气体分子和嗅纤毛膜上的受体分子结合后,  相似文献   

12.
大豆蚜嗅觉在选择寄主植物中的作用   总被引:13,自引:4,他引:9  
大豆蚜APhisglycines有翅和无规孤雌生殖蚜为其寄主植物大豆叶和鼠李叶气味所引诱,而非奇主植物棉花叶和黄瓜叶气味处于中性,丝瓜叶和南瓜叶气味具有明显的排斥作用。非寄主植物气味可以遮蔽寄主植物气味的引诱作用。大豆蚜触角感受器对植物气味具有嗅觉生理反应,对一些化合物的最小感觉阈值达10-5至10-6体积比浓度,表明大豆蚜触角上存在识别植物气味的嗅觉受体细胞。由此证明,嗅觉在大豆蚜选择寄主植物过程中起重要作用。  相似文献   

13.
大豆蚜嗅觉在选择寄主植物中的作用   总被引:14,自引:1,他引:14  
杜永均  严福顺 《昆虫学报》1994,37(4):385-392
大豆蚜 Aphis hlycines 有翅和无翅孤雌生殖蚜为其寄主植物大豆叶和鼠李叶气味所引诱,而非寄主植物棉花叶和黄瓜叶气味处于中性,丝瓜叶和南瓜叶气味具有明显的排斥作用。非寄主植物气味可以遮蔽寄主植物气味的引诱作用。大豆蚜触角感受器对植物气味具有嗅觉生理反应,对一些化合物的最小感觉阈值达10-5至10-6体积比浓度,表明大豆蚜触角上存在识别植物气味的嗅觉受体细胞。由此证明,嗅觉在大豆蚜选择寄主植物过程中起重要作用。  相似文献   

14.
昆虫感觉气味的细胞与分子机制研究进展   总被引:1,自引:1,他引:0  
张龙 《昆虫知识》2009,46(4):509-517
昆虫作为地球上最为成功的类群,已经成功地进化了精细的化学感受系统,通过化学感受系统适应各种复杂的环境,保持种群的繁荣。自1991年在动物中发现嗅觉受体基因以来,关于昆虫感受化学信息的周缘神经系统的分子和细胞机制方面的进展十分迅速。文章主要就昆虫周缘神经系统的感受化学信息的分子和细胞机制进行综述。首先对昆虫感觉气味的细胞机制的研究进展进行简要介绍。昆虫嗅觉神经元在感受化学信息过程中起着极为重要的作用,昆虫嗅觉神经元上表达的嗅觉受体不同而执行着各异的功能。各种嗅觉神经元对于化学信息的感受谱有较大的区别;嗅觉神经元对化学信息类型、浓度、流动动态等产生相应的电生理特征反应。研究表明同一种神经原可以感受多种化学信息,而一种化学信息也可以被多种神经原所感受。由神经原对化学信息感受所形成的特征组合就是感受化学信息的编码。其次较为详细地论述与昆虫感受气味分子相关的一些蛋白质的研究进展。气味分子结合蛋白是一类分子量较小、水溶性的蛋白,主要位于化学感受器神经原树突周围的淋巴液中。在结构上的主要特征是具有6个保守的半光氨酸和由6个α螺旋组成的结合腔。自1981年发现以来,已经在40余种昆虫中发现上百种。由于研究手段的不断进步,已经对该类蛋白的表达特征、结合特性以及三维结构和结合位点进行了大量的研究,提出了多个可能的功能假说,在诸多的假说中,较为广泛接受的是气味分子结合蛋白在昆虫感觉气味的过程中,是与疏水性的气味分子相结合,并将气味分子运输到嗅觉神经原树突膜上的嗅觉受体上。这些处于树突膜上的嗅觉受体则是昆虫感觉气味过程中的另一个十分重要的蛋白质。目前,已经在果蝇、按蚊、蜜蜂和家蚕等10余个昆虫种类中发现上百个嗅觉受体蛋白基因。这类蛋白是跨膜蛋白,一般具有7个跨膜区,整个蛋白的氨基酸残基在400~600个。昆虫的嗅觉受体蛋白的N-端在胞内,而C-端在胞外,这与G耦联蛋白不同。而且,昆虫的一个嗅觉神经元可以表达1~3个嗅觉受体蛋白,也与哺乳动物的一个神经元只表达一种受体蛋白有所不同。每种嗅觉受体可以感受多种气味分子,而一种气味分子可以被多个嗅觉受体所感知,这样组成了感受化学信息的编码谱。最近采用基因敲除技术和膜片钳技术研究发现,昆虫的嗅觉受体蛋白在信号传导中也有特殊性,即嗅觉受体可以直接作为离子通道,而引起动作电位。还有近来的研究表明,神经膜蛋白对于果蝇的性信息素感受神经元感受性信息素cVA是必要的。实际上,昆虫对于化学信息的感受和信号的转导,并不是上述蛋白单独起作用完成的,而是多种蛋白相互作用的结果。论文最后对该领域研究内容进行了展望。  相似文献   

15.
目的 蜜蜂天生具有丰富的嗅觉辨识能力,觅食、交配、导航以及社交活动均依赖其嗅觉系统,是研究嗅觉感知和学习记忆的行为及神经机制的理想模型。蜜蜂既能够将某个复合气味作为一个整体也可以将复合气味的各组成成分进行辨别和区分,但是在特征依赖的联合记忆中依据何种原则进行加工并存储到长期记忆还不清楚。方法 本文利用特征阳性(feature positive:AB+,B-)和特征阴性(feature negative:AB-,B+)的奖赏性嗅觉条件化,训练蜜蜂对复合气味和成分气味的辨别,并检测蜜蜂对复合气味(AB)、成分气味(B)以及特征气味(A)的中长时记忆(3 h)和长时记忆(24 h)。结果 在特征阳性的奖赏性嗅觉条件化中,蜜蜂对训练过的气味可以形成稳定的中长时和长时记忆,并且对复合气味中的特征气味的记忆与复合气味的记忆呈现高度相似。但在特征阴性的奖赏性嗅觉条件化中,蜜蜂虽能够在3 h和24 h对训练过的两种气味具有显著的伸喙反应差异,且对特征阴性的气味无显著反应,但对复合气味的反应随时间的推移而增加。结论 实验结果表明,蜜蜂选择性地将与奖赏信息联合出现的气味巩固到长时记忆中,但并未依据特征成分加工储存到长时记忆中。奖赏信息预示着食物源,与生存息息相关,表明对环境信息进行选择性的记忆巩固加工并储存可能是低等动物高效地编码生存相关信息的重要策略。  相似文献   

16.
寄生蜂对外界环境中气味的识别过程尤为复杂,需要很多组织器官参与,嗅觉系统在寄生蜂选择寄主、识别定位寄主和寄生过程中发挥着重要的作用。常见的嗅觉相关蛋白有气味结合蛋白、化学感受蛋白、气味受体等,本文从嗅觉蛋白的鉴定、结构特征与分类、表达定位、系统发育、功能研究等方面综述了寄生蜂嗅觉蛋白的国内外研究进展,为更多寄生蜂嗅觉相关蛋白的鉴定及其功能研究提供参考。  相似文献   

17.
雌性根田鼠对血液气味的行为识别   总被引:1,自引:0,他引:1  
大量研究表明尿液在动物的嗅觉通讯中具有重要作用,血液是尿液的根本来源,但对其嗅觉通讯功能的研究较少.因此以雌性根田鼠Microtus oeconomus为研究对象,在行为选择箱中观察其对4种气味源的行为响应模式以判断能否识别不同血液气味.气味源分别为雌性根田鼠血液、雄性根田鼠血液、雄性Wistar大鼠血液和蒸馏水对照.结果表明:雌性根田鼠能够识别血液气味,且通过血液气味进行种间识别,但不能进行性别识别.  相似文献   

18.
高度灵敏的嗅觉系统,能够帮助昆虫准确识别环境中不同来源的挥发性化合物,在昆虫觅食、交配和产卵等生命活动过程中起着至关重要的作用.通过感觉神经元膜上数量巨大且种类繁多的嗅觉受体,昆虫可以识别不同的气味物质,进而调控其行为.已知的昆虫嗅觉受体主要有三种,离子型受体、气味受体和响应二氧化碳及信息素的味觉受体.目前嗅觉受体的分子结构及其介导的信号转导机制仍然没有得到完整的阐释,嗅觉受体配体的鉴定工作也还任重道远.本综述就昆虫嗅觉受体的结构、进化、功能表征方法以及气味受体介导信号转导的机制等方面的研究进展进行了综述,以期对研究昆虫嗅觉编码和调控,以及昆虫与植物间互作提供一定的理论参考.  相似文献   

19.
嗅球(olfactory bulb,OB)是哺乳动物嗅觉感知的第一级中转站,但是OB不只是对嗅觉信息作简单的传递,嗅觉信息受OB内神经环路的动态调节,并转变为时空特异的神经活动信息后才传递给下一级嗅皮层。由于OB可以处理来自于不同气味受体的将近1 000个不同通道的信息输入,也接受了大量的离心输入,同时,还表达了多种激素的受体,因此,OB提供了一个研究神经网络在功能和发育上极为特异的理想模型。现综述了哺乳动物OB的细胞构筑、局部神经微环路、嗅球到不同嗅皮层的向心输入、嗅球接收来自于嗅皮层和脑干调制类的离心输入以及各条神经环路可能的功能和对气味感知的影响。  相似文献   

20.
昆虫气味受体研究进展   总被引:3,自引:0,他引:3  
嗅觉在昆虫的多种行为中发挥关键作用。气味分子与嗅觉神经元树突上气味受体的结合,参与了昆虫嗅觉识别的初始过程。昆虫的嗅觉神经元表达两类气味受体: 一是传统气味受体,该类受体同源性较低,在少部分嗅觉神经元中表达; 二是Or83b家族受体,该类受体不感受气味,在不同昆虫间较为保守且在大多数嗅觉神经元中表达。目前,对于单个传统气味受体的气味分子配体特异性所知甚少; 对于Or83b家族受体,一般认为其可能具有将传统气味受体运送至嗅觉神经元树突膜上的功能。此外,有一些实验证据不支持昆虫气味受体为G蛋白偶联受体的观点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号