首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in net photosynthesis, respiration, transpiration andcontents of total C, NO3-N and reduced N were followed throughoutthe life of leaf 6 of nitrate-dependent plants of castor beanexposed to moderate salinity stress (71 mol m–3 NaCl).Salt treatment was applied for measuring mineral flows in aparallel study (Jeschke and Pate, 1991b). Concurrent measurementswere made of solute composition and C: N molar ratios and concentrationsof reduced N and collected NO3-N in phloem sap bleeding fromshallow incisions in the top and at the base of petioles andin xylem exudates from flaps of proximal leaf midribs followingpressurization of the root system. The resulting data were usedto construct empirical models of the respective economies ofC, total N, NO3 and reduced N for a sequence of defined phasesof leaf life. Water use efficiency increased 3-fold from emergenceto a maximum of 1·5 mmol CO2 mol–1 H2O before decliningto 0·5 mmol CO2 mol–1 H2O at senescence. Xylemmolar ratios of C:N varied from 1·2–2·8,with nitrate always a smaller component than reduced N. Phloemsap C:N increased from 10–40 with leaf expansion and wasthen maintained in the range of 40–50 until falling steeplyto 20 at leaf senescence. Nitrate comprised less than 1% oftotal N in all phloem sap samples. The models of C uptake, flow,and utilization showed a major role of phloem import and thenincreasingly of laminar photosynthesis in providing C for leafgrowth. The carbon budget was thereafter characterized by ratesof phloem export closely matched to net rates of CO2 fixationby the lamina. Corresponding data for total N depicted an earlymajor role of both xylem and phloem import, but the eventualdominance of xylem import as the N source for leaf growth. Cyclingof N by xylem to phloem exchange commenced before the leaf hadachieved maximum N content, and was the major contributor tophloem export until leaf senescence when mobilized N providedmost exported N. The nitrate economy of the leaf was characterizedby early establishment of tissue pools of the ion in the petioleand to a lesser extent in the lamina, continued high rates ofnitrate reduction in the lamina but negligible assimilationin the petiole, and a release through xylem of previously accumulatedNO3 from petiole to lamina. Related data for reduced N illustratedthe much greater importance of this form of N than nitrate intransport, storage and cycling of N at all stages of leaf andpetiole life. Xylem to phloem interchanges of reduced N in petiolewere minimal in comparison with cycling through the lamina.The ratio of CO2 reduction to NO3 reduction in the lamina wasat first low (57 mol mol–1) increasing to a peak valueof 294 during mature leaf functioning before declining to 190during the presenescence phase of leaf development. This patternreflected age-related effects on water use efficiency, changesin NO3 levels in the xylem stream entering the lamina, and therelatively low photosynthetic performances of very young andsenescent laminae. Key words: Ricinus communis, leaf development, phloem transport, xylem transport, carbon, nitrogen, nitrate, reduced nitrogen, nitrate reduction, partitioning  相似文献   

2.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

3.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

4.
Seedlings of Ricinus communis L. cultivated in quartz sand weresupplied with a nutrient solution containing either 1 mol m–3NO3 or 1 mol m–3 NH+4 as the nitrogen source. Duringthe period between 41 and 51 d after sowing, the flows of N,C and inorganic ions between root and shoot were modelled andexpressed on a fresh weight basis. Plant growth was clearlyinhibited in the presence of NH+4. In the xylem sap the majornitrogenous solutes were nitrate (74%) or glutamine (78%) innitrate or ammonium-fed plants, respectively. The pattern ofamino acids was not markedly influenced by nitrogen nutrition;glutamine was the dominant compound in both cases. NH+4 wasnot transported in significant amounts in both treatments. Inthe phloem, nitrogen was transported almost exclusively in organicform, glutamine being the dominant nitrogenous solute, but theN-source affected the amino acids transported. Uptake of nitrogenand carbon per unit fresh weight was only slightly decreasedby ammonium. The partitioning of nitrogen was independent ofthe form of N-nutrition, although the flow of nitrogen and carbonin the phloem was enhanced in ammonium-fed plants. Cation uptakerates were halved in the presence of ammonium and lower quantitiesof K+, Na+ and Ca2+ but not of Mg2+ were transported to theshoot. As NH+4 was balanced by a 30-fold increase in chloride in thesolution, chloride uptake was increased 6-fold under ammoniumnutrition. We concluded that ammonium was predominantly assimilated inthe root. Nitrate reduction and assimilation occurred in bothshoot and root. The assimilation of ammonium in roots of ammonium-fedplants was associated with a higher respiration rate. Key words: Ricinus communis, nitrogen nutrition (nitrate/ammonium), phloem, xylem, transport, partitioning, nitrogen, carbon, potassium, sodium, magnesium, calcium, chloride  相似文献   

5.
Allen, S. and Smith, J A. C. 1986. Ammonium nutrition in Ricinuscommunis: its effect on plantgrowth and the chemical compositionof the whole plant, xylem and phloem saps.—J. exp. Bot.37: 1599–1610. The growth and chemical composition of Ricinus communis cultivatedhydroponically on 12 mol m – 3 NO3-N were comparedwith plants raised on a range of NH4+-N concentrations. At NH4+-Nconcentrations between 0·5 and 4·0 mol m–3,fresh- and dry-weight yields of 62-d-old plants were not significantlydifferent from those of the NO3-N controls. Growth wasreduced at 0·2 mol m–3 NH4+-N and was associatedwith increased root. shoot and C: organic N ratios, suggestingthat the plants were N-limited. At 8·0 mol m–3NH4+-N, growth was greatly restricted and the plants exhibitedsymptoms of severe ‘NH4+ toxicity’. Plants growingon NH4+-N showed marked acidification of the rooting medium,this effect being greatest on media supporting the highest growthrates. Shoot carboxylate content per unit dry weight was lower at mostNH4+-N concentrations than in the NO3-N controls, althoughit increased at the lowest NH4+-N levels. Root carboxylate contentwas comparable on the two N sources, but also increased substantiallyat the lowest NH4+-N levels. N source had little effect on inorganic-cationcontent at the whole-plant level, while NO3 and carboxylatewere replaced by Cl as the dominant anion in the NH4+-N plants.This was reflected in the ionic composition of the xylem andleaf-cell saps, the latter containing about 100 mol m–3Cl in plants on 8·0 mol m–3 NH4+. Xylem-saporganic-N concentration increased more than threefold with NH4+-N(with glutamine being the dominant compound irrespective ofN source) while in leaf-cell sap it increased more than 12-foldon NH4+-N media (with arginine becoming the dominant species).In the phloem, N source had little or no effect on inorganic-cation,sucrose or organic-N concentrations or sap pH, but sap fromNH4+-N plants contained high levels of Cl and serine. Collectively, the results suggested that the toxic effects ofhigh NH4+ concentrations were not the result of medium acidification,reduced inorganic-cation or carboxylate levels, or restrictedcarbohydrate availability, as is commonly supposed. Rather,NH4+ toxicity in R. communis is probably the result of changesin protein N turnover and impairment of the photorespiratoryN cycle. Key words: Ricinus, ammonium nutrition, nitrate, whole-plant composition, xylem, Phloem, amino acids, carboxylate  相似文献   

6.
Seedlings of Ricinus communis L. were cultivated in quartz sandand supplied with media which contained either different concentrationsof nitrate or ammonium nitrogen and were treated with a lowsalt stress. The concentration of ABA was determined in tissuesand in xylem and phloem saps. Between 41 and 51 day after sowing,abscisic acid (ABA) flows between roots and shoots were modelled.Long-distance transport of ABA was not stimulated under conditionsof nitrate deficiency (0.2 mol m–3). However, when ammoniumwas given as the only N source (1.0 mol m–3), ABA transportin both xylem and phloem was increased significantly. Mild saltstress (40 mol m–3 NaCl) increased ABA transport in nitrate-fedplants, but not in ammonium-fed plants. The leaf conductancewas lowered by salt treatment with both nitrogen sources, butit was always lower in ammonium-fed compared to nitrate-fedplants. A negative correlation of leaf conductance to ABA levelsin leaves or flow in xylem was found only in comparison of ammonium-fedto nitrate-fed plants. Key words: Abscisic acid, ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrogen nutrition  相似文献   

7.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

8.
Hordeum vulgare cv. California Mariout was grown for 50 d insand culture at 100 mol m–3 NaCl. Xylem sap was collectedthrough incisions at the base of individual leaves along thestem axis by applying pressure to the root system. K+ concentrationsin the xylem sap reaching individual leaves increased towardsthe apex, while concentrations of Na+, NO3, and Cldeclined. Phloem exudate was obtained by collecting into Li2EDTAfrom the base of excised leaves. K/Na ratios of phloem exudatesincreased from older to younger leaves. K/Na ratios in xylem sap and phloem exudate were combined withchanges in ion content between two harvests (38 and 45 d aftergermination) and the direction of phloem export from individualleaves, to construct an empirical model of K+ and Na+ net flowswithin the xylem and phloem of the whole plant. This model indicatesthat in old leaves, phloem export of K+ greatly exceeded xylemimport. In contrast, Na+ export was small compared to importand Na+ once imported was retained within the leaf. The direction of export strongly depended on leaf age. Old,basal leaves preferentially supplied the root, and most of theK+ retranslocated to the roots was transferred to the xylemand subsequently became available to the shoot. Upper leavesexported to the apex. Young organs were supplied by xylem andphloem, with the xylem preferentially delivering Na+ , and thephloem most of the K+ . For the young ear, which was still coveredby the sheath of the flag leaf, our calculation predicts phloemimport of ions to such an extent that the surplus must havebeen removed by an outward flow in the xylem. Within the culm,indications for specific transfers of K+ and Na+ between xylemand phloem and release or absorption of these ions by the tissuewere obtained. The sum of these processes in stem internodes and leaves ledto a non-uniform distribution of Na+ and K+ within the shoot,Na+ being retained in old leaves and basal stem internodes,and K+ being available for growth and expansion of young tissues. Key words: Hordeum vulgare L., K+, Na+, stem, salt stress  相似文献   

9.
Uptake and partitioning through the xylem and phloem of K+,Na+, Mg2+ , Ca2+ and Cl were studied over a 9 d intervalduring late vegetative growth of castor bean (Ricinus communisL.) plants exposed to a mean salinity stress of 128 mol m–3NaCl. Empirically based models of flow and utilization of eachion within the whole plant were constructed using informationon ion increments of plant parts, molar ratios of ions to carbonin phloem sap sampled from petioles and stem internodes andpreviously derived information on carbon flow between plantsparts in xylem and phloem in identical plant material. Salientfeatures of the plant budget for K+ were prominent depositionin leaves, high mobility of K+ in phloem, high rates of cyclingthrough leaves and downward translocation of K+ providing theroot with a large excess of K+ . Corresponding data for Na+showed marked retention in the root, lateral uptake from xylemby hypocotyl, stem internodes and petioles leading to low intakeby young leaf laminae and substantial cycling from older leavesback to the root. The partitioning of the anionic componentof NaCl salinity, Cl, contrasted to that of Na+ in thatit was not substantially retained in the root, but depositedmore or less uniformly in stem, petiole and leaf lamina tissues.The flow pattern for Mg2+ showed relatively even depositionthrough the plant but some preferential uptake by young leaves,generally lesser export than import by leaf laminae, and a returnflow of Mg2+ from shoot to root considerably less than the recordedincrement of the root. Ca2+ partitioning contrasted with thatof the other ions in showing extremely poor phloem mobility,leading to progressive preferential accumulation in leaf laminaeand negligible cycling of the element through leaves or root.Features of the response of Ricinus to salinity shown in thepresent study were discussed with data from similar modellingstudies on white lupin (Lupinus albus L.) and barley (Hordeumvulgare L.) Key words: Ricinus communis L, potassium, sodium, chloride, calcium, magnesium, phloem, xylem, transport, partitioning, salinity  相似文献   

10.
An investigation was made to study the assimilation and transportof 15N-labelled nitrate nitrogen in rice plant (Oryza sativaL.). Nitrogen from labelled nitrate at the end of plant feedingwas found mainly in nitrate form, and was more prevalent inroots, stem and leaf sheaths. The nitrite fraction had the nextlargest 15N enrichment. The 15NO3 assimilation in the newlyemerged panicle was mainly in amide and amino acid. The 15N-incorporation at day 0 was greatest in amino acid andnitrate of roots and decreased towards the stem and leaves.Incorporation in these fractions considerably decreased fromday 0 to day 10. Probably most of the nitrogen from the nitratesource was transported from the roots to the shoot in nitrateand amino acid forms. A decrease of 15N-incorporation in the soluble N fraction andincrease in the insoluble N fraction from day 0 to day 10 inplant parts, particularly the blades, suggested that proteinsynthesis occurred mostly in young parts of the shoot duringthis period. The marked variation in 15N distribution in differentparts of the plant during the 10 days indicated that the nitrogenin roots and tillers was probably remobilized and transportedto other parts, particularly the upper leaf blades. Ammonium and nitrate nitrogen transport in rice plant are compared. (Received May 11, 1974; )  相似文献   

11.
We studied the responses of Xanthium occidentale (Bertol.) (cockleburor Noogoora burr), a noxious weed, to atmospheric CO2 enrichmentand nitrate-N concentrations in the root zone ranging from 0.5to 25 mM. CO2 enrichment (1500 cm3 m–3) increased dry-matterproduction to about the same extent (18 per cent) at all levelsof supplied N: most of the increment in dry matter was distributedequally between leaves and roots so that there was little effecton shoot-to-root dry-weight ratios. Growth was stimulated greatlyby N and plateaued at 12 mM supplied N. Shoot-to-root dry-weightand total N ratios increased with increasing N supply. CO2 enrichmenthad no effect on the total amount of N accumulated by plants,but increased the N-use efficiency of leaves. Enriched plantshad lower concentrations and quantities of N in their leavesthan controls, and therefore lower shoot-to-root total N ratios.Little free NO3 accumulated in organs of control or enrichedplants. NO3 was the major form of N in xylem sap fromdetopped plants at low supplied NO3-N, but amino N was equalin importance at high supplied NO3-N in control and enrichedplants. Concentrations of NO3 were lower in the xylemsap of CO2 enriched plants. It was concluded that the betterN-use efficiency of CO2 enriched plants could result in increasedgrowth of X. occidentale in regions of marginal soil fertilityas atmospheric levels of CO2 increase. CO2 enrichment, nitrogen, Xanthium, Noogoora burr, cocklebur  相似文献   

12.
Salinity Reduces Water Use and Nitrate-N-use Efficiency of Citrus   总被引:1,自引:0,他引:1  
Five-month-old Cleopatra mandarin (Citrus reticulata Blanco)(CM) and Volkamer lemon (Citrus volkameriana Ten. and Pasq.)(VL) seedlings were grown in a glasshouse in 2·3-1 potsof Candler fine sand. Plants were irrigated with either non-saline(ECe = 0·23 dS m-1) or saline (6·13 dS m-1) waterusing 3:1 NaCl:CaCl2 solution over a 4-week period. A singleapplication of K15NO3 (19·64 atom % excess 15N) at 212mg N1-1, was substituted for a normal weekly fertilization after3 weeks and plants were harvested 7 d later. The transpirationrate, uptake of nitrogen, growth and nitrogen-use efficiency(NUE) on a dry weight basis (mg d. wt mg-1 N) of both specieswas reduced by salinity. Based on growth, water-use and chloride(Cl) accumulation in leaves, VL was more salt-sensitive thanCM, but 15N uptake was equally reduced by salinity in both species.Salinity reduced 15N uptake relatively more than shoot growthover the 7-d period, such that the 15NUE (mg d. wt µg-115N) of new shoot growth of both species increased. There wasno evidence of Cl antagonism of nitrate (NO3) uptake but totalplant 15NO3 uptake was positively correlated with whole planttranspiration in both species. Thus, it appears that reductionsin NO3 uptake are more strongly related to reduced water usethan to Cl antagonism from salt stress.Copyright 1993, 1999Academic Press Sodium, chloride, salinity, calcium, nitrate, 15NO3 uptake, nitrogen allocation, nitrogen-use efficiency, water use, Citrus reticulata, Citrus volkameriana  相似文献   

13.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

14.
Shelp, B. J. 1987. Plant characteristics and nutrient compositionand mobility of broccoli (Brassica oleracea var. italica) suppliedwith NH+4, NO3 or NH4NO3.—J. exp. Bot. 38: 1603–1618. The effects of varying NH+4, NO3 or NH4NO3 concentration onthe final plant characteristics, element composition, and accumulationof NO3-N, NH+4-N and organic-N were evaluated in broccoli (Brassicaoleracea var. italicacv. Futura and Premium Crop) plants culturedin vermiculite under greenhouse conditions supplemented withlight. NH+4-grown plants were stunted and exhibited signs ofmarginal necrosis on the old leaves, accompanied by an accumulationof NH4. The tissue levels of N, P, Mn, Cu, Zn and B were generallyincreased by NH+4 versus NO3 nutrition whereas the reverse wastrue for Ca; Mg and K were only slightly affected, if at all.These results are attributed to: changes in element availabilityresulting from reduced rhizosphere pH due to NH+4uptake ratherthan NO 3uptake; competition of Ca uptake by NH+4; and dilutionof N by increased vegetative growth with NO3-nutrition. Theelement concentrations of N, P or K were similar in all tissueswhereas Ca, B and Mn were markedly less in the florets and youngleaves compared to mature leaves; this supports literature indicatingthat the former elements are phloem-mobile whereas the latterare not. Assuming that the nutrient supply for mature leavesis delivered principally via the xylem stream, the data suggestthat nutrients for developing leaves and florets are suppliedpredominantly in the phloem. If so, under our experimental conditions.Zn and Cu were also readily mobile in the phloem whereas Mgmovement was restricted. NH4+ versus NO4+ J nutrition alteredthe distribution of these elements. The two broccoli cultivarstested under the greenhouse environment differed in NH+4 toleranceand in the distribution of K and Cu suggesting there was a geneticbasis for cultivar variation in mineral acquisition and redistribution. Key words: Plant nutrition, phloem mobility, elemental composition.  相似文献   

15.
Tobacco shoots were grown in vitro for 35 d, in MS culture mediummodified to include various sources (nitrate-N, ammonium-N ora mixture) and levels (0–120 mM) of N, and in the presenceof 0–180 mM NaCI or iso-osmotic concentrations of mannitol.Growth of control plantlets was significantly inhibited whenNH4+-N was the sole N source, and at high (120 mM) NO3-N supply. Under conditions of salt stress (90 and 180 mM NaCI)growth was repressed, with roots being more severely affectedthan shoots. Salinity also inhibited root emergence in vitro.The only alleviation of the salt stress by nitrate nutritionobserved in this study was on shoot growth parameters of plantletsgrown on 60 mM NO3-N and 90 mM NaCI. Although both weresignificantly inhibited by NaCI, nitrate reduc-tase activitywas more severely affected than nitrate uptake. When mannitolreplaced NaCI in the culture medium, similar Inhibition of growth,nutrient uptake and enzyme activity were recorded. These observations,together with the relatively low recorded values for Na+ andCI uptake, indicate that under in vitro salt stress conditionsthe negative effects of NaCI are primarily osmotic. Key words: Growth, nitrogen metabolism, osmotic stress, salinity  相似文献   

16.
The xylem exudation of detopped 7-d-old seedlings of Zea maysL. doubled when KCI was present in the root medium comparedto seedlings maintained on water. It was further enhanced whenKCI was replaced by nitrogen compounds such as nitrate, ammoniumand glutamine. The role of the nitrate assimilation pathwayon the enhancement of xylem exudation rate was investigatedusing tungstate, an inhibitor of nitrate reductase (NR) activity,and phosphinothricin or methionine sulphoximine, inhibitorsof glutamine synthetase (GS) activity. The sap levels of NO3,NH4+, glutamine, and asparagine was used to ascertain the invivo inhibition of both enzymes. The tungstate effects werealso checked by measuring leaf in vitro NA activity and NR proteincontent. Xylem exudation rate of detopped seedlings fed withKNO3 decreased when the nitrate assimilation pathway was blockedeither at the NR or at GS sites. This decrease was preventedwhen urea (acting as NH4+ supply) was given simultaneously withtungstate. KNO3 does not act directly on exudation, but throughthe involvement of NH4+. The involvement of glutamine was alsoshown since GS inhibition resulted in a cancellation of theenhancing effect of KNO3 on exudation. As change of exudationrate was not linked to change in sap osmolarity, it is assumedthat the assimilation chain could modify root water conductance.The role of glutamine was discussed. Key words: Exudation, maize, nitrate, conductance, NR, GS  相似文献   

17.
Phosphate Regulation of Nitrate Assimilation in Soybean   总被引:24,自引:1,他引:23  
It is known that phosphorus deficiency results in alterationsin the assimilation of nitrogen. An experiment was conductedto investigate mechanisms involved in altered 15NO3 uptake,endogenous 15N translocation, and amino acid accumulation insoybean (Glycine max L. Merrill, cv. Ransom) plants deprivedof an external phosphorus supply for 20 d in solution culture.Phosphorus deprivation led to decreased rates of 15NO3uptake and increased accumulation of absorbed 15N in the root.Both effects became more pronounced with time. Asparagine, theprimary transport amino acid in soybean, accumulated in largeexcess in roots and stems. In roots of phosphorus-deprived plants,concentrations of ATP and inorganic phosphate declined rapidly,but dry weight accumulation was similar to or above that ofthe control even after 20 d of treatment. Arginine accumulationin leaves was greatly enhanced, even though 15N partitioninginto the insoluble reduced-N fraction of leaves was unaffected.The results suggest that decreases in NO3 uptake in lowphosphorus plants could be caused by feedback control factorsand by limited ATP availability. The decline in endogenous Ntransport from the root to the shoot may be associated withchanges in membrane properties, which also result in paralleleffects on hydraulic conductance and the upward flow of waterthrough the plant. Key words: Phosphorus stress, nitrate uptake, nitrate translocation, arginine  相似文献   

18.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

19.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

20.
Shelp, B. J. 1987. The composition of phloem exudate and xylemsap from broccoli (Brassica oleracea var. italica) suppliedwith NH+4, NO3 or NH4NO3.—J. exp. Bot. 38: 1619–1636. The detailed composition of xylem sap and exudate from stemincisions of attached inflorescences of broccoli (Brassica oleraceavar. italica) was compared in plants supplied with NH+4, NO3or NH4NO3. A phloem origin for the exudate was suggested fromthe high levels of sugars (71–133 mg cm-3), amino acids(8·1-26·7 mg cm3) and K. (2·3–3·8mg cm3), the low levels of NO3 and Ca, the high C: N (w/w) ratios(8·3–33), and the alkaline pH (7·2–7·3).In contrast, the xylem sap was mildly acidic (pH 5·6–6·0),and possessed lower levels of all organic and inorganic solutesbut NO3 and Ca, and lower ratios of K: Ca, Mg: Ca and C: N (0·6–4·4). Glutamine was the predominant o-phthalaldehyde-reactive aminocompound in both transport fluids with the next most abundantamino acids dependent on sap type and N-form. Together witharginine, -aminobutyric acid, which was found only in the xylemstream, was enhanced by NH+4compared to NO3 -nutrition suggestingthat glutamate metabolism was stimulated in the roots. Underlimiting N the amino acid concentrations in the transport fluidswere greater with NH+4 than with NO3. NO3 reduction occurredin both the root and shoot with the latter site predominatingover the entire N range (0-300 mol m3). Even though the compositionof nitrogenous solutes in the xylem was dependent on cultivarand N source, the composition of the phloem streams supplyingthe developing inflorescence was relatively unaffected. The data on the element composition of organs and phloem sapare interpreted to suggest that, in spite of the restrictedmobility of some elements such as B and Mn, a significant proportionof their total supply to developing sinks is carried in thephloem stream. Key words: Transport fluid composition, plant nutrition, phloem mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号