首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wildfires and harvesting are important disturbances to forest ecosystems, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. This study was conducted at sites with similar soil, climatic, and other properties in a spruce-dominated boreal forest near Chisholm, Alberta, Canada. Soil microbial communities were assessed following four treatments: control, harvest, burn, and burn plus timber salvage (burn-salvage). Burn treatments were at sites affected by a large wildfire in May 2001, and the communities were sampled 1 year after the fire. Microbial biomass carbon decreased 18%, 74%, and 53% in the harvest, burn, and burn-salvage treatments, respectively. Microbial biomass nitrogen decreased 25% in the harvest treatment, but increased in the burn treatments, probably because of microbial assimilation of the increased amounts of available NH4+ and NO3 due to burning. Bacterial community composition was analyzed by nonparametric ordination of molecular fingerprint data of 119 samples from both ribosomal intergenic spacer analysis (RISA) and rRNA gene denaturing gradient gel electrophoresis. On the basis of multiresponse permutation procedures, community composition was significantly different among all treatments, with the greatest differences between the two burned treatments versus the two unburned treatments. The sequencing of DNA bands from RISA fingerprints revealed distinct distributions of bacterial divisions among the treatments. Gamma- and Alphaproteobacteria were highly characteristic of the unburned treatments, while Betaproteobacteria and members of Bacillus were highly characteristic of the burned treatments. Wildfire had distinct and more pronounced effects on the soil microbial community than did harvesting.  相似文献   

2.
Although ammonia-oxidizing bacteria (AOB) are likely to play a key role in the soil nitrogen cycle, we have only a limited understanding of how the diversity and composition of soil AOB communities change across ecosystem types. We examined 23 soils collected from across North America and used sequence-based analyses to compare the AOB communities in each of the distinct soils. Using 97% 16S rRNA sequence similarity groups, we identified only 24 unique AOB phylotypes across all of the soils sampled. The majority of the sequences collected were in the Nitrosospira lineages (representing 80% of all the sequences collected), and AOB belonging to Nitrosospira cluster 3 were particularly common in our clone libraries and ubiquitous across the soil types. Community composition was highly variable across the collected soils, and similar ecosystem types did not always harbor similar AOB communities. We did not find any significant correlations between AOB community composition and measures of N availability. From the suite of environmental variables measured, we found the strongest correlation between temperature and AOB community composition; soils exposed to similar mean annual temperatures tended to have similar AOB communities. This finding is consistent with previous studies and suggests that temperature selects for specific AOB lineages. Given that distinct AOB taxa are likely to have unique functional attributes, the biogeographical patterns exhibited by soil AOB may be directly relevant to understanding soil nitrogen dynamics under changing environmental conditions.  相似文献   

3.
Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.  相似文献   

4.
Climate warming and shifting precipitation regimes are affecting biodiversity and ecosystem functioning. Most studies have focused on the influence of warming and altered precipitation on macro-organisms, whereas the responses of soil microbial communities have been neglected. We studied the changes in the abundance, richness, and composition of the entire bacterial kingdom and 16 dominant bacterial phyla/classes in response to increased precipitation, warming, and their combination, by conducting a 5-year experiment in a steppe ecosystem in Inner Mongolia, China. Watering had a greater effect than warming on almost all the bacterial groups as indicated by changes in all the three attributes (abundance, richness, and composition). The 16 phyla/classes responded differentially to the experimental treatments, with Acidobacteria and Gamma-proteobacteria being the most sensitive. Stepwise regression analyses further revealed that climate changes altered the abundance and richness of bacterial groups primarily through direct routes (e.g., increasing soil water content), and changed the community composition through both direct and indirect routes (e.g., reducing soil total nitrogen content and increasing soil pH). The diverse responses of various bacterial groups could imply some potential shift in their ecosystem functions under climate changes; meanwhile, the indirect routes that are important in altering bacterial composition suggest that specific strategies (e.g., adding NH4NO3 to maintain soil nitrogen content and pH) could be adopted to maintain soil microbial composition under climate changes.  相似文献   

5.
The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%), while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands.  相似文献   

6.
Minerals constitute an ecological niche poorly investigated in the soil, in spite of their important role in biogeochemical cycles and plant nutrition. To evaluate the impact of minerals on the structure of the soil bacterial communities, we compared the bacterial diversity on mineral surfaces and in the surrounding soil. Three pure and calibrated minerals (apatite, plagioclase and a mix of phlogopite-quartz) were buried into the organo-mineral layer of a forest soil. After a 4-year incubation in soil conditions, mineral weathering and microbial colonization were evaluated. Apatite and plagioclase were the only two significantly weathered minerals. The analysis of the 16S rRNA gene sequences generated by the cloning-sequencing procedure revealed that bacterial diversity was higher in the surrounding soil and on the unweathered phlogopite-quartz samples compared with the other minerals. Moreover, a multivariate analysis based on the relative abundance of the main taxonomic groups in each compartments of origin demonstrated that the bacterial communities from the bulk soil differed from that colonizing the minerals. A significant correlation was obtained between the dissolution rate of the minerals and the relative abundance of Beta-proteobacteria detected. Notably, many sequences coming from bacteria colonizing the mineral surfaces, whatever the mineral, harbored high similarity with efficient mineral weathering bacteria belonging to Burkholderia and Collimonas genera, previously isolated on the same experimental site. Taken together, the present results provide new highlights concerning the bacterial communities colonizing minerals surfaces in the soil and suggests that the minerals create true ecological niches: the mineralosphere.  相似文献   

7.
Elevated levels of nitrogen input into various terrestrial environments in recent decades have led to increases in soil nitrate production and leaching. However, nitrifying potential and nitrifying activity tend to be highly variable over space and time, making broad-scale estimates of nitrate production difficult. This study investigates whether the high spatiotemporal variation in nitrate production might be explained by differences in the structure of ammonia-oxidizing bacterial communities in nitrogen-saturated coniferous forest soils. The diversity of ammonia-oxidizing bacteria of the β-subgroup Proteobacteria was therefore investigated using two different PCR-based approaches. The first targeted the 16S rRNA gene and involved temporal temperature gradient electrophoresis (TTGE) of specifically amplified PCR products, with subsequent band excision and nucleotide sequence determination. The second approach involved the cloning and sequencing of PCR-amplified amoA gene fragments. All recovered 16S rDNA sequences were closely related to the culture strain Nitrosospira sp. AHB1, which was isolated from an acid soil and is affiliated with Nitrosospira cluster 2, a sequence group previously shown to be associated with acid environments. All amoA-like sequences also showed a close affinity with this acid-tolerant Nitrosospira strain, although greater sequence variation could be detected in the amoA analysis. The ammonia-oxidizing bacterial community in the nitrogen-saturated coniferous forest soil was determined to be very stable, showing little variation between different organic layers and throughout the year, despite large differences in the total Bacterial community structure as determined by 16S rDNA DGGE community fingerprinting. These results suggest that environmental heterogeneity affecting ammonia oxidizer numbers and activity, and not ammonia oxidizer community structure, is chiefly responsible for spatial and temporal variation in nitrate production in these acid forest soils.  相似文献   

8.
Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60–70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related stresses.  相似文献   

9.
We isolated 1,264 bacterial strains from forest soils previously surveyed via pyrosequencing of rRNA gene amplicons. Conventional culturing techniques recovered a substantial proportion of the community, with isolates representing 22% of 98,557 total pyrotags. Growth characteristics of isolates indicated that ecological traits were associated with relative abundances of corresponding pyrotag operational taxonomic units.  相似文献   

10.
Moso bamboo is fast-growing and negatively allelopathic to neighboring plants. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities. To better understand the impacts of bamboo invasion on soil communities, the phylogenetic structure and diversity of the soil bacterial communities in moso bamboo forest, adjacent Japanese cedar plantation, and bamboo-invaded transition zone were examined using a combination of 16S rRNA gene clone libraries and bar-coded pyrosequencing techniques. Based on the number of operational taxonomic units (OTUs), Shannon diversity index, Chao1 estimator, and rarefaction analysis of both techniques, the bamboo soil bacterial community was the most diverse, followed by the transition zone, with the cedar plantation possessing the lowest diversity. The results from both techniques revealed that the Acidobacteria and Proteobacteria predominated in the three communities, though the relative abundance was different. The 250 most abundant OTUs represented about 70 % of the total sequences found by pyrosequencing. Most of these OTUs were found in all three soil communities, demonstrating the overall similarity among the bacterial communities. Nonmetric multidimensional scaling analysis showed further that the bamboo and transition soil communities were more similar with each other than the cedar soils. These results suggest that bamboo invasion to the adjacent cedar plantation gradually increased the bacterial diversity and changed the soil community. In addition, while the 10 most abundant OTUs were distributed worldwide, related sequences were not abundant in soils from outside the forest studied here. This result may be an indication of the uniqueness of this region.  相似文献   

11.
An ectomycorrhiza is a multitrophic association between a tree root, an ectomycorrhizal fungus, free-living fungi and the associated bacterial communities. Enzymatic activities of ectomycorrhizal root tips are therefore result of the contribution from different partners of the symbiotic organ. However, the functional potential of the fungus-associated bacterial communities remains unknown. In this study, a collection of 80 bacterial strains randomly selected and isolated from a soil–ectomycorrhiza continuum (oak–Scleroderma citrinum ectomycorrhizas, the ectomycorrhizosphere and the surrounding bulk soil) were characterized. All the bacterial isolates were identified by partial 16S rRNA gene sequences as members of the genera Burkholderia, Collimonas, Dyella, Mesorhizobium, Pseudomonas, Rhizobium and Sphingomonas. The bacterial strains were then assayed for β-xylosidase, β-glucosidase, N-acetyl-hexosaminidase, β-glucuronidase, cellobiohydrolase, phosphomonoesterase, leucine-aminopeptidase and laccase activities, chitin solubilization and auxin production. Using these bioassays, we demonstrated significant differences in the functional distribution of the bacterial communities living in the different compartments of the soil–ectomycorrhiza continuum. The surrounding bulk soil was significantly enriched in bacterial isolates capable of hydrolysing cellobiose and N-acetylglucosamine. In contrast, the ectomycorrhizosphere appeared significantly enriched in bacterial isolates capable of hydrolysing glucopyranoside and chitin. Notably, chitinase and laccase activities were found only in bacterial isolates belonging to the Collimonas and Pseudomonas genera. Overall, the results suggest that the ectomycorrhizal fungi favour specific bacterial communities with contrasting functional characteristics from the surrounding soil.  相似文献   

12.
Abstract: The Mount Graham red squirrel (Tamiasciurus hudsonicus grahamensis) is constrained to the Pinaleño Mountains in southeastern Arizona, USA. The population's endangered status and extensive forest damage from insects and fire warrants a better understanding of habitat variables important for nest site selection. We examined characteristics of cavity (n = 91) and drey (n = 38) nests and compared these to random sites (n = 113). Dreys were found primarily in Engelmann spruce (Picea engelmannii) and corkbark fir (Abies lasiocarpa var. arizonica). Cavity nests occurred primarily in aspen (Populus tremuloides) and corkbark fir. Squirrels selected nest sites with higher canopy cover and more corkbark fir, decayed logs, and living trees. Forest management plans emphasizing thinning must consider how altering these habitat characteristics could affect availability and suitability of tree stands for nesting squirrels.  相似文献   

13.
14.
15.
In this study, we used denaturing gradient gel electrophoresis (DGGE) and culture-dependent methodology to characterize bacterial populations and mineral-dissolving bacteria in a mineral-rich soil profile. DGGE and sequencing revealed 13 known bacterial families and 7 unknown populations for the soil profile. Seventy-one isolates could solubilize feldspar. Weathering effectiveness and pattern of the isolates differed among the horizons. The 71 mineral-dissolving isolates were affiliated with 32 bacterial species within 14 genera, among which Bacillus, Burkholderia, and Arthrobacter were dominant. Distinct mineral-dissolving populations were observed between the surface and subsurface horizons. Notably, the deepest horizon showed maximum diversity of the mineral-dissolving bacteria. Furthermore, a significantly higher proportion of the high efficiency mineral-dissolving bacteria was observed in the deeper horizons than in the upper horizons. The results suggested that the soil profile harboured diverse mineral-dissolving populations and the dissolving potential and pattern and the community of the mineral-dissolving bacteria changed with depth.  相似文献   

16.
In addition to the benthic and pelagic habitats, the epiphytic compartment of submerged macrophytes in shallow freshwater lakes offers a niche to bacterial ammonia-oxidizing communities. However, the diversity, numbers, and activity of epiphytic ammonia-oxidizing bacteria have long been overlooked. In the present study, we analyzed quantitatively the epiphytic communities of three shallow lakes by a potential nitrification assay and by quantitative PCR of 16S rRNA genes. On the basis of the m2 of the lake surface, the gene copy numbers of epiphytic ammonia oxidizers were not significantly different from those in the benthic and pelagic compartments. The potential ammonia-oxidizing activities measured in the epiphytic compartment were also not significantly different from the activities determined in the benthic compartment. No potential ammonia-oxidizing activities were observed in the pelagic compartment. No activity was detected in the epiphyton of Chara aspera, the dominant submerged macrophyte in Lake Nuldernauw in The Netherlands. The presence of ammonia-oxidizing bacterial cells in the epiphyton of Potamogeton pectinatus was also demonstrated by fluorescent in situ hybridization microscopy images. By comparing the community composition as assessed by the 16S rRNA gene PCR-denaturing gradient gel electrophoresis approach, it was concluded that the epiphytic ammonia-oxidizing communities consisted of cells that were also present in the benthic and pelagic compartments. Of the environmental parameters examined, only the water retention time, the Kjeldahl nitrogen content, and the total phosphorus content correlated with potential ammonia-oxidizing activities. None of these parameters correlated with the numbers of gene copies related to ammonia-oxidizing betaproteobacteria.In ammonium-rich environments such as eutrophic lakes, ammonia-oxidizing Betaproteobacteria (β-AOB) perform the first, often rate-limiting step in the process of nitrification, hence playing an important role in the nitrogen turnover in a wide range of natural and artificial habitats (31). Their monophyletic nature allowed the successful application of molecular techniques based on the genes coding for the 16S rRNA gene and the A subunit of the ammonia monooxygenase enzyme (amoA). β-AOB have been considered an ideal model group in molecular microbial ecology (31). The last few decades have seen significantly increased numbers of studies focusing on diversity (7, 22, 24, 44, 48, 54) and niche differentiation and related driving factors (8, 13, 14, 30, 33, 45), as well as on the abilities of ammonia-oxidizing bacteria to cope with contaminants (40, 49, 53), environmental stresses (18, 34, 39), and global change (23, 43). The discovery of the process of anaerobic ammonia oxidization (42), together with the isolation of members of the kingdom Crenarchaeota able to oxidize ammonia (26), is currently changing and deepening the knowledge and understanding of the microorganisms involved in the nitrogen cycle.Nitrification in freshwater as well as in shallow marine lagoon systems has been assumed to be associated with the sediment rather than with the overlying water (2). However, when planktonic nitrification rates are integrated over the whole water column, Vincent and Downes (59) demonstrated the impact of the pelagic community on the total nitrification process in lakes. In shallow freshwater lakes populated by large stands of macrophytes, the role of epiphytic nitrification must also be taken into account, since submerged macrophytes can provide a large accessible surface area for attached microorganisms (61). The bacterial ammonia oxidizers inhabiting the epiphytic compartment have been the subject of a limited number of studies. Eriksson and colleagues (15-17) measured the nitrification rates on the leaves and litter of submerged macrophytes, and Körner (29) reported that considerable numbers of ammonia-oxidizing bacteria colonize the leaves of different species of submerged macrophytes by means of most-probable-numbers counts. In a recent study of the β-AOB in shallow freshwater lakes (12), we described in a qualitative way that the epiphytic communities are composed of members of the Nitrosomonas oligotropha lineage and cluster 3 of the Nitrosospira lineage (48).The present study focused on a more quantitative estimation of the ammonia-oxidizing bacteria in the epiphyton of two different submerged macrophytes, i.e., Potamogeton pectinatus and Chara aspera, present in three shallow freshwater lakes, which form part of the series of lakes studied before (12). We hypothesized that the numbers of cells would differ between the epiphytic, benthic, and pelagic compartments, as previously observed for the community composition, due to the prevailing environmental conditions (12).  相似文献   

17.
Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.  相似文献   

18.
Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.  相似文献   

19.
In order to study pollen rain six funnel-like pollen traps were set up on tree trunks 1.3 m above the ground in a firspruce forest in. Changbai Mt. at 1,150 m a.s.1, for a time interval from June 1985 to August 1986. Pollen influx values were calculated by volumetricat and exotic pollen methods (see Table 1). Pollen representation of each major tree type, e. g. Pinus, Abies, Picea, Betula, Larix and some decideous broad-leaved trees, was deduced front a comparison between the percentage of the tree type in pollen spectrum and that in forest. The pollen spectrum obtained from pollen trap was compared with that extracted from surface; ample taken from the same vegetation zone; the differences and their possible causes are also discussed.  相似文献   

20.
Although soil structure largely determines energy flows and the distribution and composition of soil microhabitats, little is known about how microbial community composition is influenced by soil structural characteristics and organic matter compartmentalization dynamics. A UV irradiation-based procedure was developed to specifically isolate inner-microaggregate microbial communities, thus providing the means to analyze these communities in relation to their environment. Whole- and inner-microaggregate fractions of undisturbed soil and soils reclaimed after disturbance by surface coal mining were analyzed using 16S rDNA terminal restriction fragment polymorphism (T-RFLP) and sequence analyses to determine salient bacterial community structural characteristics. We hypothesized that inner-microaggregate environments select for definable microbial communities and that, due to their sequestered environment, inner-microaggregate communities would not be significantly impacted by disturbance. However, T-RFLP analysis indicated distinct differences between bacterial populations of inner-microaggregates of undisturbed and reclaimed soils. While both undisturbed and reclaimed inner-microaggregate bacterial communities were found dominated by Actinobacteria, undisturbed soils contained only Actinobacteridae, while in inner-microaggregates of reclaimed soils Rubrobacteridae predominate. Spatial stratification of division-level lineages within microaggregates was also evidenced, with Proteobacteria clones being prevalent in libraries derived from whole microaggregates. The fractionation methods employed in this study therefore represent a valuable tool for defining relationships between biodiversity and soil structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号