首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Ca(2+)-dependent activation of calcineurin phosphatase activity is regulated by an autoinhibitory element (residues 457-482) located 43 residues COOH-terminal of the calmodulin-binding domain (residues 390-414). Removal of residues 457-482 does not result in full Ca(2+)/calmodulin-independent activity. Full activity in the absence of Ca(2+) requires the removal of residues 420-457. In the present study the presence of additional autoinhibitory elements within residues 420-457 was tested using two calcineurin A subunit COOH-terminal region constructs containing residues 420-511 (AI(420-511)) or 328-511 (AI(328-511)). Using recombinant, Ca(2+)/calmodulin-independent calcineurin, AI(420-511) and AI(328-511) were three- to fourfold more potent inhibitors of calcineurin phosphatase activity than the synthetic calcineurin autoinhibitory peptide(457-482). Calmodulin reversed the inhibition of calcineurin phosphatase activity by AI(328-511) but not AI(420-511). Kinetic studies indicated that AI(420-511) exhibited mixed-type inhibition and that the enzyme/substrate/inhibitor complex is partially active. These results indicate that (i) additional autoinhibitory elements are present within residues 420-457, (ii) calmodulin-binding to the autoinhibitory domain neutralizes the inhibitory function of the 420-457 autoinhibitory segment, (iii) the full-length autoinhibitory domain is a mixed-type inhibitor of calcineurin phosphatase activity, and (iv) the enzyme/substrate/inhibitor complex is partially catalytically active.  相似文献   

2.
Structural studies of the calmodulin-dependent protein kinase I have shown how the calmodulin-binding domain and autoinhibitory domain interact with the active sites of the enzyme. In this work, we have studied the interaction in solution of two synthetic short and long (22- and 37-residue) peptides representing the binding and autoinhibitory domains of CaMKI with Ca2+-CaM using CD, NMR, and EPR spectroscopy. Both peptides adopt alpha-helical structure when bound to Ca2+-CaM, as detected by CD spectroscopy. Cadmium-113 NMR showed that both peptides induced cooperativity in metal ion binding between the two lobes of the protein. To directly observe the effect of the peptides upon CaM in solution, biosynthetically isotope labeled [methyl-13C-Met]CaM was prepared and studied by 1H, 13C NMR. The relaxation effects of two nitroxide spin-labeled derivatives of the short peptide showed the N-terminal portion of the CaM-binding domain interacting with the C-lobe of CaM, while the C-lobe of the peptide binds to the N-lobe of CaM. Our results are consistent with Trp303 and Met316 acting as the anchoring residues for the C- and N-lobes of CaM, respectively. The NMR spectra of the long peptide showed further differences, suggesting that additional interactions may exist between the autoinhibitory domain and CaM.  相似文献   

3.
4.
Product and substrate analogs have been employed as inhibitors of the low-molecular-weight phosphatase activity of calcineurin, a calmodulin-activated protein phosphatase. Product inhibition kinetics demonstrate that both products, para-nitrophenol and inorganic phosphate, inhibit para-nitrophenyl phosphate hydrolysis in a competitive manner. Inorganic phosphate is a linear competitive inhibitor, whereas the inhibition by para-nitrophenol is more complex. An analog of para-nitrophenol, pentafluorophenol, was found to be a linear competitive inhibitor. These patterns indicate a rapid equilibrium random kinetic mechanism for calcineurin. This mechanism suggests that calcineurin does not generate a phosphoryl enzyme during its catalytic reaction. Application of sulfate analogs indicates that binding of substrate occurs via the phosphoryl moiety. It is suggested that binding is a function of the affinity of ligand for the metal ion involved in calcineurin action. The dependence of the kinetic parameters of calcineurin upon pH was examined to provide information concerning the role of protonation in the activity and specificity of calcineurin. Log (VM) versus pH data for two low-molecular-weight substrates, para-nitrophenyl phosphate and tyrosine-O-phosphate, reveal a pKa value for the enzyme-substrate complex. Analysis of log (VM/KM) data yields a pKa value for the free enzyme of 8.0. Protonation of the phenolic leaving group during hydrolysis is not the rate-limiting step in calcineurin catalysis.  相似文献   

5.
Summary The effects of divalent metals, metal chelators (EDTA, EGTA) and sodium dodecyl sulfate were investigated on the phosphatase activity of isolated bovine brain calcineurin assayed in the absence (called intrinsic) and presence of calmodulin. Intrinsic phosphatase was increased by Mn2+, was unaffected by Mg2+, Ca2–, and Ba+, and was markedly inhibited by Ni2–, Fe2+, Zn2+ and Cu2–. When assayed in the presence of calmodulin, many divalent metals (Ni2–, Zn2+, Pb2+, Cd2+), besides Mn2+, increased modestly the phosphatase activity at low concentrations (10–100 M) and inhibited it markedly at high concentrations. Ca2–-calmodulin stimulated phosphatase activity was antagonized by Ni2+, Zn2+, Fe2+, Cu2+, Pb2+, at low concentrations (50 M), and by Ba2+, Cd2+ at slightly higher concentrations (> 100 M); Mn2+ and Co2– (50 M to 1 mM) in fact augmented it. EDTA and EGTA in a concentration and time dependent fashion inhibited the intrinsic phosphatase activity, particularly that of trypsinized calcineurin. SDS in low concentrations (0.005%) augmented the phosphatase activity and inhibited it at high concentrations. Mn2+ (± calmodulin) and Ca2+ only with calmodulin present increased the phosphatase activity assayed with low concentrations of SDS. The EDTA dependent inhibition of intrinsic phosphatase was almost abolished in assays containing SDS. Prior exposure of calcineurin to Mn2+ led to a high activity conformation state of calcineurin that was long-lived or pseudo-irreversible. Such Mn2+-activated state of calcineurin exhibited no discerbible change in the affinity towards myelin basic protein or its inhibition by trifluoperazine. At alkaline pH, Mg2+ supported the intrinsic phosphatase activity, although to a lesser degree than Mn2+. The latter cation, compared to Mg2+ and Ni2+, was also a more powerful stimulator of the calcineurin phosphatase assayed with histone (III-S) and myosin light chain as substrates.  相似文献   

6.
Carruthers NJ  Stemmer PM 《Biochemistry》2008,47(10):3085-3095
Calcineurin is a Ca (2+)/calmodulin-activated Ser/Thr phosphatase important in cellular actions resulting in memory formation, cardiac hypertrophy, and T-cell activation. This enzyme is subject to oxidative inactivation by superoxide at low micromolar concentrations and by H 2O 2 at low millimolar concentrations. On the basis of the hypothesis that oxidation of Met residues in calmodulin-binding domains inhibits binding to calmodulin, purified calcineurin was used to study the susceptibility of Met residues to oxidation by H 2O 2. The rate for oxidation of Met 406 in the calmodulin-binding domain was determined to be 4.4 x 10 (-3) M (-1) s (-1), indicating a high susceptibility to oxidation. Functional repercussions of Met 406 oxidation were evaluated using native enzyme and a calcineurin mutant in which Met 406 was exchanged for Leu. Measurement of fluorescent calmodulin binding demonstrated that oxidation of Met 406 results in a 3.3-fold decrease in the affinity of calmodulin for calcineurin. Calcineurin activation exhibited a loss in cooperativity with respect to calmodulin following Met 406 oxidation as shown by a reduction in the Hill slope from 1.88 to 0.86. Maximum phosphatase activity was unaffected by Met oxidation. Changes in the calcineurin-calmodulin interaction were accompanied by a 40% loss in the ability of calmodulin to stimulate binding of immunophilin/immunosuppressant to calcineurin. All effects on calmodulin binding to the native enzyme by the treatment with H 2O 2 could be reversed by treating the enzyme with methionine sulfoxide reductase. These results indicate that the calmodulin-binding domain of calcineurin is susceptible to oxidation at Met 406 and that oxidation disrupts calmodulin binding and enzyme activation. Oxidation-dependent decreases in the affinity of calmodulin for calcineurin can potentially modulate calmodulin-dependent signaling and calmodulin distribution.  相似文献   

7.
AF2 is a high affinity murine Ab possessing potent neutralizing activity against human IFN-gamma. In carrying out the modifications to humanize this Ab, we discovered that an initial version displayed affinity for IFN-gamma that was slightly less than that of AF2, but exhibited IFN-gamma-neutralizing activity that was severely diminished. Characterization via site-directed mutagenesis revealed that the majority of this loss in IFN-gamma-neutralizing activity was due to altering the V(H) framework residue at position 11. V(H) position 11 is distal to the binding surface of the Ab; however, it, along with residues 110 and 112, have been identified as forming the socket of a molecular ball-and-socket joint between the V and C domains of the Ig Fab, which influences the elbow angle between these domains. To determine whether disrupting the structure of this joint was the basis for reduced IFN-gamma-neutralizing capacity, we altered residue 148 of C(H1), which with residue 149 comprises the corresponding ball portion of the joint. Changing this single C(H1) domain residue diminished the ability of the Ab to neutralize IFN-gamma to a level similar to that observed with the V(H) alteration. Thus, an intact ball-and-socket joint between the V and C domains in AF2 is required for potent neutralization of IFN-gamma. These results suggest the importance of the elbow angle between Ig V and C domains in Ab activity, and support the hypothesis that this joint can be an important functional element of Ab structure.  相似文献   

8.
9.
Calmodulin has been shown to interact with high affinity with muscle phosphofructokinase (Mayr, G. W. (1984) Eur. J. Biochem. 143, 513-520, 521-529). In this study, direct binding measurements indicated that each of the two subunits of dimeric phosphofructokinase bound two calmodulins with Kd values of about 3 nM and 1 microM, respectively, in a strictly Ca2+-dependent way. To get more detailed information about this interaction, calmodulin-binding fragments were isolated from a CNBr digest of phosphofructokinase using affinity chromatography on calmodulin-agarose. Two fragments, M11 (Mr 3080) and M22 (Mr 8060), formed a 1:1 stoichiometric complex with Ca2+-calmodulin. The amino acid sequences of these fragments were determined, and their positions in the three-dimensional structure-model of phosphofructokinase are proposed. Fragment M11, which binds to calmodulin with the higher affinity (Kd 11.4 nM), is located in a region of the subunit where two dimers have been proposed to make contacts if associating to active tetrameric enzyme. A stabilization of the dimeric form of the enzyme by binding of calmodulin supports this location of M11. The weaker binding fragment M22 (Kd 198 nM) corresponds to the C-terminal part of the polypeptide and contains the site which is phosphorylated by cAMP-dependent protein kinase. Both fragments have structural properties in common with the isolated calmodulin-binding domains of myosin light chain kinase: two cationic segments rich in hydrophobic residues, one constantly possessing a tryptophan, and the other exhibiting an amino acid sequence resembling sites phosphorylated by cAMP-dependent protein kinase.  相似文献   

10.
Liu P  Huang C  Jia Z  Yi F  Yu DY  Wei Q 《Biochimie》2005,87(2):215-221
Calcineurin is composed of a catalytic subunit A (CNA) and a regulatory subunit B (CNB). In addition to the catalytic core, CNA further contains three non-catalytic domains--CNB binding domain (BBH), calmodulin binding domain (CBD), and autoinhibitory domain (AI). To investigate the effect of these three domains on the activity of CNA, we have constructed domain deletion mutants CNAa (catalytic domain only), CNAac (CNAa and CBD), and CNAaci (CNAa, CBD and AI). By using p-nitrophenylphosphate and (32)P-labeled R(II) peptide as substrates, we have systematically examined the phosphatase activities, kinetics, and regulatory effects of Mn(2+)/Ni(2+) and Mg(2+). The results show that the catalytic core has the highest activity and the order of activity of the remaining constructs is CNAac>CNAaci>CNA. Sequential removal of the non-catalytic domains corresponds to concurrent increases of the phosphatase activity assayed under several conditions. This observation clearly demonstrates that non-catalytic domains negatively regulate the enzyme activity and act as intra-molecular inhibitors, possibly through restraining the conformation elasticity of the catalytic core required for optimal catalysis or interfering with substrate access. The sequential domain deletion favors activation of the enzyme by Mn(2+)/Ni(2+) but not by Mg(2+) (except for CNAa), suggesting that enzyme activation by Mn(2+)/Ni(2+) is mainly mediated via the catalytic domain, whereas activation by Mg(2+) is via both the catalytic core and non-catalytic domains.  相似文献   

11.
12.
13.
RPTPmu is a receptor-like protein-tyrosine phosphatase (RPTP) whose ectodomain mediates homotypic cell-cell interactions. The intracellular part of RPTPmu contains a relatively long juxtamembrane domain (158 amino acids; aa) and two conserved phosphatase domains (C1 and C2). The membrane-proximal C1 domain is responsible for the catalytic activity of RPTPmu, whereas the membrane-distal C2 domain serves an unknown function. The regulation of RPTP activity remains poorly understood, although dimerization has been proposed as a general mechanism of inactivation. Using the yeast two-hybrid system, we find that the C1 domain binds to an N-terminal noncatalytic region in RPTPmu, termed JM (aa 803-955), consisting of a large part of the juxtamembrane domain (120 aa) and a small part of the C1 domain (33 aa). When co-expressed in COS cells, the JM polypeptide binds to both the C1 and the C2 domain. Strikingly, the isolated JM polypeptide fails to interact with either full-length RPTPmu or with truncated versions of RPTPmu that contain the JM region, consistent with the JM-C1 and JM-C2 interactions being intramolecular rather than intermolecular. Furthermore, we find that large part of the juxtamembrane domain (aa 814-922) is essential for C1 to be catalytically active. Our findings suggest a model in which RPTPmu activity is regulated by the juxtamembrane domain undergoing intramolecular interactions with both the C1 and C2 domain.  相似文献   

14.
15.
The Ciona intestinalis voltage sensor–containing phosphatase (Ci-VSP) shares high homology with the phosphatidylinositol phosphatase enzyme known as PTEN (phosphatase and tensin homologue deleted on chromosome 10). We have taken advantage of the similarity between these proteins to inquire about the coupling between the voltage sensing and the phosphatase domains in Ci-VSP. Recently, it was shown that four basic residues (R11, K13, R14, and R15) in PTEN are critical for its binding onto the membrane, required for its catalytic activity. Ci-VSP has three of the basic residues of PTEN. Here, we show that when R253 and R254 (which are the homologues of R14 and R15 in PTEN) are mutated to alanines in Ci-VSP, phosphatase activity is disrupted, as revealed by a lack of effect on the ionic currents of KCNQ2/3, where current decrease is a measure of phosphatase activity. The enzymatic activity was not rescued by the introduction of lysines, indicating that the binding is an arginine-specific interaction between the phosphatase binding domain and the membrane, presumably through the phosphate groups of the phospholipids. We also found that the kinetics and steady-state voltage dependence of the S4 segment movement are affected when the arginines are not present, indicating that the interaction of R253 and R254 with the membrane, required for the catalytic action of the phosphatase, restricts the movement of the voltage sensor.  相似文献   

16.
17.
The Ser-Thr kinase Akt is activated in epithelial cells by Salmonella enterica serovar typhimurium. The bacterial effector SigD, which is translocated into host cells via the specialized type III secretion system, is essential for Akt activation. Here, we investigated the inositol phospholipid substrate preferences of SigD. Recombinant SigD preferentially dephosphorylated phosphatidylinositol 3,5-biphosphate and phosphatidylinositol 3,4,5-triphosphate over other phosphatidylinositol lipids. Phosphatidylinositol 3-phosphate was not a substrate, suggesting the 5' phosphate moiety is one of the preferred substrates. Database searches revealed that SigD bears a small region of homology to the mammalian type II inositol 5-phosphatase synaptojanin. Mutation of two conserved residues in this region, Lys527 and Lys530, decreased or abrogated phosphatase activity, respectively. The Shigella flexneri SigD homologue, IpgD, displayed a similar activity in vitro and also activated Akt when used to complement a DeltasigD Salmonella strain. A mutation in IpgD at Lys507, analogous to Lys530 of SigD, also failed to activate Akt. Thus, we have characterized a region near the carboxyl-terminus of SigD which is important for phosphatase activity. We discuss how dephosphorylation of inositol phospholipids by SigD in vivo might contribute to the activation of Akt.  相似文献   

18.
Calcineurin A was purified by calmodulin-Sepharose affinity chromatography from Sf9 cells infected with recombinant baculovirus containing the cDNA of a rat calcineurin A isoform. The Sf9-expressed calcineurin A has a low basal phosphatase activity in the presence of EDTA (0.9 nmol/min/mg) which is stimulated 3-5-fold by Mn2+. Calmodulin increased the Mn2+ stimulated activity 3-5-fold. Bovine brain calcineurin B increased the A subunit activity 10-15-fold, and calmodulin further stimulated the activity of reconstituted A and B subunits 10-15-fold (644 nmol/min/mg). The Km of calcineurin A for 32P-RII pep (a peptide substrate (DLDVPIPGRFDRRVSVAAE) for CaN), was 111 microM with or without calmodulin, and calmodulin increased the Vmax about 4-fold. The Km of reconstituted calcineurin A plus B for 32P-RII pep was 20 microM, and calmodulin increased the Vmax 18-fold without affecting the Km. CaN A467-492, a synthetic autoinhibitory peptide (ITSFEEAKGLDRINERMPPRRDAMP) from calcineurin, inhibited the Mn2+/calmodulin-stimulated activities of the reconstituted enzyme and the A subunit with IC50's of 25 microM and 90 microM, respectively. The reconstitution of the phosphatase activity of an expressed isoform of calcineurin A by purified B subunit and calmodulin may facilitate comparative studies of the regulation of calcineurin A activity by the B subunit and calmodulin.  相似文献   

19.
The controversy surrounding silicon (Si) benefits and essentiality in plants is exacerbated by the differential ability of species to absorb this element. This property is seemingly enhanced in species carrying specific nodulin 26‐like intrinsic proteins (NIPs), a subclass of aquaporins. In this work, our aim was to characterize plant aquaporins to define the features that confer Si permeability. Through comparative analysis of 985 aquaporins in 25 species with differing abilities to absorb Si, we were able to predict 30 Si transporters and discovered that Si absorption is exclusively confined to species that possess NIP‐III aquaporins with a GSGR selectivity filter and a precise distance of 108 amino acids (AA) between the asparagine–proline–alanine (NPA) domains. The latter feature is of particular significance since it had never been reported to be essential for Si selectivity. Functionality assessed in the Xenopus oocyte expression system showed that NIPs with 108 AA spacing exhibited Si permeability, while proteins differing in that distance did not. In subsequent functional studies, a Si transporter from poplar mutated into variants with 109‐ or 107‐AA spacing failed to import, and a tomato NIP gene mutated from 109 to 108 AA exhibited a rare gain of function. These results provide a precise molecular basis to classify higher plants into Si accumulators or excluders.  相似文献   

20.
In the literature, there is an ambiguity as to the respective roles played by calcineurin phosphatase activity (CPA) and muscle innervation in the reestablishment of the slow-twitch muscle phenotype after muscle regeneration in different species. In this study, we wanted to determine the role of calcineurin and muscle innervation on the appearance and maintenance of the slow phenotype during mouse muscle regeneration. The pattern of myosin expression and CPA was analyzed in adult (n=15), regenerating (n=45) and denervated-regenerating (n=32) slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles. Moreover, in a second group of denervated-regenerating mice (n=9), the animals were treated with a calcineurin inhibitor. Regeneration was induced by injection of cardiotoxin and in the denervated-regenerating group, denervation was carried out by cutting the sciatic nerve before the administration of cardiotoxin. In innervated-regenerating soleus muscle, CPA increased continuously after 10 days postinjury and by 21 days, there was a 3.5-fold increase in CPA compared with adult basal level, whereas in innervated-regenerating EDL muscle, CPA remained unchanged. Moreover, our results show that in denervated-regenerating muscles, the MyHC profile was identical in spite of the functional differences inherent in these muscles. In long-term denervated-regenerating muscles, a slow muscle phenotype was reexpressed both in the presence or absence of calcineurin inhibitor. Our results show that although in innervated-regenerating mouse muscle, the appearance of a slow phenotype is correlated with a peak of CPA, in denervated-regenerating muscles, a slow phenotype is triggered and maintained in a calcineurin- and nerve-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号