首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
K Shiba  K Ito  T Yura    D P Cerretti 《The EMBO journal》1984,3(3):631-635
We describe the properties of a temperature-sensitive mutant, ts24, of Escherichia coli. The mutant has a conditional defect in export of periplasmic and outer membrane proteins. At 42 degrees C, precursor forms of these proteins accumulate within the cell where they are protected from digestion by externally added trypsin. The accumulated precursors are secreted and processed very slowly at 42 degrees C. The mutation is complemented by expression of the wild-type secY (or prlA) gene, which has been cloned into a plasmid vector from the promoter-distal part of the spc ribosomal protein operon. The mutant has a single base change in the middle of the secY gene, which would result in the replacement of a glycine residue by aspartic acid in the protein product. These results demonstrate that the gene secY (prlA) is essential for protein translocation across the E. coli cytoplasmic membrane.  相似文献   

3.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

4.
Characterization of the cyn operon in Escherichia coli K12   总被引:9,自引:0,他引:9  
  相似文献   

5.
S Bost  D Belin 《The EMBO journal》1995,14(18):4412-4421
The signal sequence of the murine serine protease inhibitor PAI-2 promotes alkaline phosphatase export to the E. coli periplasm. However, high level expression of this chimeric protein interferes with cell growth. Since most suppressors of this toxic phenotype map to secA and secY, growth arrest results from a defective interaction of the chimeric protein with the export machinery. We have characterized suppressors which map in secG, a newly defined gene of the export machinery. All single amino acid substitutions map to three adjacent codons. These secG mutants have a weak Sec phenotype, as determined by their effect on export mediated by wild-type and mutant signal sequences. Whilst a secG disruption allele also confers a weak Sec phenotype, it does not suppress the toxicity of the chimeric protein. This difference results from a selective effect of the secG suppressors on the kinetics of export mediated by the PAI-2 signal sequence. Using a malE signal sequence mutant, which has a Mal-phenotype in secG mutant strains, we have isolated extragenic Mal+ suppressors. Most suppressors map to secY, and several are allele-specific. Finally, SecG overexpression accelerates the kinetics of protein export, suggesting that there are two types of functional translocation complexes: with or without SecG.  相似文献   

6.
It has been shown that the synthesis of an export-defective protein can interfere with the normal export process in Escherichia coli by limiting the availability of SecB protein, a component of the export apparatus (Collier, D.N., Bankaitis, V.A., Weiss, J.B., and Bassford, P.J. (1988) Cell 53, 273-283). Consistent with this observation, we find that the interference elicited by an export-defective LamB protein is a titratable response resulting from the limitation of a single ligand. We have mapped the interfering region in LamB to between amino acids 320 and 380 of the mature protein. Expression of this sequence in the form of a LacZ-LamB-LacZ fusion protein elicits the export interference phenotype. Deletion of the sequence from an export-defective LamB protein eliminates the ability of this protein to interfere with the export of other secreted proteins. Together, these findings show that this sequence is both necessary and sufficient to cause export interference. Surprisingly, deletion of this sequence from an otherwise wild-type LamB protein does not cause the mutant LamB product to exhibit any obvious export defect. Based on our results, we propose that SecB interacts with both amino acids 320-380 of mature LamB and the LamB signal sequence during initiation of the export process.  相似文献   

7.
8.
9.
The structural features of Escherichia coli ribosomal protein S8 that are involved in translational regulation of spc operon expression and, therefore, in its interaction with RNA have been investigated by use of a genetic approach. The rpsH gene, which encodes protein S8, was first inserted into an expression vector under the control of the lac promoter and subsequently mutagenized with methoxylamine or nitrous acid. A screening procedure based on the regulatory role of S8 was used to identify mutants that were potentially defective in their ability to associate with spc operon mRNA and, by inference, 16S mRNA. In this way, we isolated 39 variants of the S8 gene containing alterations at 34 different sites, including 37 that led to single amino acid substitutions and 2 that generated premature termination codons. As the mutations were distributed throughout the polypeptide chain, our results indicate that amino acid residues important for the structural integrity of the RNA-binding domain are not localized to a single segment. Nonetheless, the majority were located within three short sequences at the N terminus, middle, and C terminus that are phylogenetically conserved among all known eubacterial and chloroplast versions of this protein. We conclude that these sites encompass the main structural determinants required for the interaction of protein S8 with RNA.  相似文献   

10.
11.
Summary Transport of vitamin B12 across the cytoplamic membrane ofEscherichia coli requires the products ofbtuC andbtuD, two genes in thebtuCED operon. The role ofbtuE, the central gene of this operon, was examined. Deletions withinbtuE were constructed by removal of internal restriction fragments and were crossed onto the chromosome by allelic replacement. In-frame deletions that removed 20% or 82% of thebtuE coding region did not affect expression of the distalbtuD gene. These nonpolar deletions had little effect on vitamin B12 binding (whole cells or periplasmic fraction) and transport. They did not affect the utilization of vitamin B12 or other cobalamins for methionine biosynthesis, even in strains with decreased outer membrane transport of vitamin B12. ThebtuE mutations did not impair adenosyl-cobalamin dependent catabolism of ethanolamine or repression ofbtuB expression. Thus, despite its genetic location in the transport operon, thebtuE product plays no essential role in vitamin B12 transport.  相似文献   

12.
Summary A unique feature of the spc ribosomal protein operon is that its region distal to the promoter contains a gene (secY) for an integral membrane protein, followed by an open reading frame termed X which has recently been proposed to encode a new ribosomal protein (protein B). We now show that the open reading frame X indeed directs the synthesis of a protein with electrophoretic mobilities similar to the B protein, and this supports the proposal that X may be more appropriately called rpmJ. Insertion of a plasmid sequence into the secY-rpmJ boundary of the chromosome caused a reduced expression of secY probably by destabilizing the secY part of the message. The results of complementation experiments suggested that a normal level of expression of rpmJ is not required for growth or protein secretion.  相似文献   

13.
14.
Summary In Escherichia coli the iron uptake systems are regulated by the fur gene product. The synthesis of the outer membrane proteins fiu, fepA, fecA, fhuA, fhuE and cir is derepressed at low iron concentrations in the medium or constitutive in a fur mutant. The fur gene region cloned into pACYC184 was analysed by restriction analysis, Tn1000 mutagenesis and complementation studies. The presence of fur + plasmids repressed synthesis of the proteins fepA, fecA, fhuE and cir in a chromosomal fur mutant. More quantitatively, the repression to wild-type levels was shown with lac fusions to the genes fiu, fepA and cir. In minicells an 18,000 dalton protein was identified as the fur gene product. Correlated with the fur protein a slightly smaller protein, possibly a degradation product, was observed. The gene fur was mapped on the E. coli chromosome near nagA at about 15.5 min.  相似文献   

15.
16.
17.
18.
19.
20.
A gene involved in lysine excretion in Escherichia coli K12   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号