首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatic cell hybrids produced between cercopithecoid monkey and Chinese hamster cells were used to assay susceptibility to SV40 viral infection in an attempt to define the primate factors that determine permissiveness to viral replication. These cell hybrids, which differed in their primate chromosome complement, were found to differ also in their ability to sustain viral replication. A correlation was found between an elevated SV40 viral replication and the presence of the chromosomes 11 in the rhesus monkey and 12 in the African green monkey which seem to be homologous to human 11. Preliminary studies also showed that the same chromosome seems to be responsible for the ability of the cell hybrids to rescue virus from rodent-transformed cells.  相似文献   

2.
In male Cercopithecus aethiops (green monkey; grivet) and Erythrocebus patas (dancing red monkey; patas monkey), the pattern of urinary C21 steroids was estimated and compared with those of man, baboon and rhesus monkey. The results indicate diminished 11 beta- and 17 alpha-hydroxylation in steroid biosynthesis as well as diminished delta 4-3-keto reduction and increased 20 beta-reduction in metabolism in these two species.  相似文献   

3.
该文采用家蚕Bomoyx mori活体注射BrdU结合FPG(fluorochrome photolyusis Giem-sa)显带方法,以生殖腺为材料,成功显示出家蚕有丝分裂中期染色体复制带。由于处于S-期的细胞有早有晚,且同一细胞DNA各片段的复制亦有先后,因此BrdU掺入DNA合成的时间也有所不同,从而可产生出早、中、晚复制带型。BrdU掺入时间早,则会在家蚕部分染色体上出现大面积浅染带纹的早复制带。每一染色体皆有其独特的带纹特征,据此可初步将它与其它染色体相互区分;随着BrdU掺入时间的推后,染色体上会出现深浅交替、丰富的带纹,即中复制带型;至S-期DNA合成晚期掺入BrdU,最终染色体出现以深染带纹为主,浅染带纹仅出现于少数染色体的中部、近中部或端部的晚复制带。  相似文献   

4.
A study of the late DNA replication pattern in chromosomes of human acute leucaemia cells revealed a significant diffrence from control. Chromosomes, 2,3 and 4-5 of the acute leucaemia cells finish their DNA replication earlier, and chromosomes 1, 13-15 and 16 later, compared to the control chromosomes. The difference in the pattern of DNA replication between analogous chromosomes of acute leucaemia and donor cells was associated with the discovery of large late-replicating chromatin blocks in the pericentromeric regions of leucaemia cell chromosomes. Some relationship is suggested between the pattern of pericentromeric heterochromatin DNA replication and cell differentiation.  相似文献   

5.
Frequencies of radiation-induced chromosome aberrations in spermatogonia, peripheral blood lymphocytes and bone-marrow cells of the rhesus monkey (Macaca mulatta) and in human blood lymphocytes, were determined at different exposures of X-rays. The dose-response curve for the induction of reciprocal translocations in spermatogonia suggested a “hump” at about 200 rad. The absolute frequencies of chromosome aberrations in somatic and germ cells of the rhesus monkey were low in comparison with most other mammalian species and the ratio between aberrations in the two tissues was 25 to 1 at the 100 rad level. Although the numbers of “effective chromosome arms” in man and rhesus monkey are similar (81 vs. 83), the rhesus monkey showed a lower rate of induction of dicentrics in blood lymphocytes than man at all doses, reaching statistical significance at the 300 rad level.  相似文献   

6.
Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.  相似文献   

7.
MDH2, SOD2, PEPS, and ITPA were assigned to Papio papio chromosomes 3, 4, 5, and 10, respectively, by their concordant segregation with previously assigned gene markers in a set of baboon X mouse somatic cell hybrids. The linkage of NP, IDH2, SORD, MPI, and PKM2 was confirmed, and three other independently segregating markers (MDH1, ACY1, and PEPB) were identified. Syntenic groups described in the baboon are compared to those found in man and in the rhesus monkey.  相似文献   

8.
应用涂染技术研究人和猕猴染色体的同源性   总被引:2,自引:0,他引:2  
黄浩杰  余龙 《动物学报》1998,44(4):458-465
用24种人类染色体探针对人和猕猴G-显带染色体进行涂染。结果显示:人类所有染色体在猕猴的染色体组里都有其同源染色体或染色体片段。  相似文献   

9.
The pattern of late DNA replication in the allocyclic X chromosome has been studied in the primary fibroblasts of two neotropical primates (Cebus apella and Leontopithecus rosalia chrysomelas). A comparison with previous reports showed a pattern identical with that of (1) the allocyclic X chromosome of human fibroblasts, and (2) the allocyclic X chromosome of rhesus and Cebus lymphocytes. Our results show that at least in one species (C. apella), and probably in rhesus and Leontopithecus, there is no tissue-specific difference between the late DNA replication patterns of the allocyclic X chromosome as there is between human lymphocytes and fibroblasts.  相似文献   

10.
Similar to its close relative human herpesvirus 8, rhesus monkey rhadinovirus (RRV) persists predominantly in B cells of its natural host. Rhesus monkey B-cell lines immortalized by the Epstein-Barr-related virus from rhesus monkeys (rhEBV) were used as targets for infection by RRV. These cultured B cells were susceptible to infection by RRV and continued to produce low titers of RRV for months of continuous culture. Infection by RRV did not detectably alter the growth rates of these B-cell lines when it was measured at standard or reduced serum concentrations. Depending on the cell line, 5 to 40% of the B cells stained positive for the RRV genome by fluorescence in situ hybridization (FISH). Most RRV-positive cells showed a fine punctate nuclear staining pattern consistent with latent infection, while a small minority of cells (0.2 to 1%) contained large, intensely staining nuclear foci consistent with productive, replicative infection. Greater than 90% of the cells were rhEBV genome positive in a pattern consistent with latent infection, and again only a small minority of cells showed a productive, replicative staining pattern. Dual, two-color FISH staining revealed coinfection of numerous cells with both RRV and rhEBV, but productive replication of RRV and rhEBV was always observed in separate cells, never in the same cell. Thus, productive replication of RRV is unlinked to that of rhEBV; factors that influence activation to productive replication act separately on RRV and rhEBV, even within the same cell. The percentage of B cells expressing green fluorescent protein (GFP) early after infection with a recombinant RRV containing a GFP reporter gene was dose dependent and at a low multiplicity of infection increased progressively over time until 14 to 17 days after infection. These results establish a naturalistic cell culture system for the study of infection and persistence by RRV in rhesus monkey B cells.  相似文献   

11.
Zhao SZ  Li Y  Jiang X  Lu YL  Tao DC  Liu YQ  Ma YX 《遗传》2011,33(4):365-370
为了研究人类近亲恒河猴中PIWI家族蛋白PIWIL4的结构和表达情况,文章首次利用同源比对和RT-PCR方法克隆了恒河猴piwil4基因,检测了其mRNA在恒河猴心脏、脑、结肠、附睾和睾丸5种组织中的表达情况,利用生物信息学的方法对恒河猴piwil4基因和人的PIWIL4(HIWI2)基因编码的蛋白产物进行了同源性分析和结构域分析,并进一步利用免疫组化的方法比较了PIWIL4蛋白在成人、成年恒河猴和性未成熟恒河猴睾丸组织中的表达分布。结果表明,恒河猴piwil4 mRNA在多组织中表达,恒河猴和人的PIWIL4蛋白的氨基酸序列同源性达97%以上,均含有PAZ和Piwi结构域,它们在两物种成年个体睾丸组织中空间分布一致,但在不同发育阶段恒河猴睾丸组织中的分布发生了改变,幼猴中PIWIL4蛋白主要表达于生精小管细胞的细胞核,在成年猴睾丸组织中则表达于各种细胞的胞浆中。上述结果提示,piwil4基因在人类和恒河猴精子发生过程中作用类似,PIWIL4蛋白在幼猴和成年猴睾丸组织中的表达差异提示它们在不同发育阶段功能的改变。  相似文献   

12.
1. The fate of (−)-quinic acid has been investigated in 22 species of animals including man. 2. In man and three species of Old World monkeys, i.e. rhesus monkey, baboon and green monkey, oral quinic acid was extensively aromatized (20–60%) and excreted in the urine as hippuric acid, which was determined fluorimetrically. 3. In three species of New World monkeys, i.e. squirrel monkey, spider monkey and capuchin, in three species of lemurs, i.e. bushbaby, slow loris and tree shrew, in the dog, cat, ferret, rabbit, rat, mouse, guinea pig, hamster, lemming, fruit bat, hedgehog and pigeon, oral quinic acid was not extensively aromatized (0–5%). 4. In the rhesus monkey, injected quinic acid was not aromatized, but largely excreted unchanged. 5. In rhesus monkeys pretreated with neomycin to suppress gut flora, the aromatization of oral quinic acid was considerably suppressed. 6. In rats and rhesus monkeys [14C]quinic acid was used and this confirmed its low aromatization in rats and its high aromatization in the monkeys. 7. Shikimic acid given orally was excreted as hippuric acid (26–56%) in rhesus monkeys, but not in rats. 8. The results support the view that quinic acid and shikimic acid are aromatized by the gut flora in man and the Old World monkeys.  相似文献   

13.
Regional DNA replication kinetics in human X chromosomes have been analysed using BrdU-33258 Hoechst-Giemsa techniques in five cell types from human females: amniotic fluid cells, fetal and adult skin fibroblasts, and fetal and adult peripheral lymphocytes. In all cell types, the late-replicating X chromosome can be distinguished from its active, earlyreplicating homologue, and both the early and late X exhibit temporally and regionally characteristic internal sequences of DNA replication. The replication pattern of the early X in amniotic fluid cells and skin fibroblasts is similar to that of the early X in lymphocytes, although certain discrete regions are later-replicating in these monolayer tissue culture cells than are the corresponding regions in lymphocytes. However, DNA replication kinetics in late X chromosomes from amniotic fluid cells and skin fibroblasts are strikingly different from those observed in lymphocytes with respect both to the initiation and termination of DNA synthesis. The predominant late X pattern observed in 80–95% of lymphocytes, in which replication terminates in the long arm in bands Xq21 and Xq23, was never seen in amniotic fluid cells or skin fibroblasts. Instead, in these cell types, bands Xq25 and Xq27 are the last to complete DNA synthesis, while bands Xq21 and Xq23 are earlier-replicating; this pattern is similar to the alternative replication sequence observed in 5–20% of lymphocyte late X chromosomes. This replication sequence heterogeneity is consistent with the existence of tissue-specific influences on the control of DNA replication in human X chromosomes.  相似文献   

14.
大熊猫与黑熊显带染色体的比较研究   总被引:3,自引:0,他引:3  
王亚军  陈红卫 《遗传学报》1999,26(4):309-314
以体外培养的大熊猫(Ailuropodamelanoleuca)与黑熊(Selenarctosthibetanus)外周血淋巴细胞为实验材料,应用BrdU复制带显示技术,研究了大熊猫和黑熊染色体晚复制带带型。通过对大熊猫与黑熊显带染色体带型的比较,发现黑熊部分具端着丝粒的染色体与大熊猫部分具中,亚中,或亚端着丝粒的染色体的整个短臂或整个长臂有明显的带型相似性,在黑熊具中,亚中着丝粒染色体中,仅33  相似文献   

15.
To analyze the proposed growth-inhibitory function of wild-type p53, we compared simian virus 40 (SV40) DNA replication in primary rhesus monkey kidney (PRK) cells, which express wild-type p53, and in the established rhesus monkey kidney cell line LLC-MK2, which expresses a mutated p53 that does not complex with large T antigen. SV40 DNA replication proceeded identically in both cell types during the course of infection. Endogenously expressed wild-type p53 thus does not negatively modulate SV40 DNA replication in vivo. We suggest that inhibition of SV40 DNA replication by wild-type p53 in in vitro replication assays is due to grossly elevated ratios of p53 to large T antigen, thus depleting the replication-competent free large T antigen in the assay mixtures by complex formation. In contrast, the ratio of p53 to large T antigen in in vivo replication is low, leaving the majority of large T antigen in a free, replication-competent state.  相似文献   

16.
In humans, placental corticotropin-releasing hormone (CRH) production has been linked to the determination of gestational length, and a late gestational fall in CRH-binding protein (CRH-BP) has been linked to the onset of parturition. Expression of placental CRH mRNA is limited to primates, and only in man has a circulating CRH-BP been described. As the fall in CRH-BP in late gestation has been associated with parturition in humans, we sought to determine whether a CRH-BP circulated in the plasma of other primates. It is unclear whether maternal plasma CRH concentrations are elevated in New World monkeys and prosimians. We have therefore performed CRH plasma measurements in the blood of pregnant marmosets, in several species of lemur, and in pregnant and fetal rhesus monkeys as a positive control. Using gel chromatography, CRH-BP was detected in the human, gorilla, chimpanzee, orangutan, gibbon, macaque, squirrel monkey, and marmoset, but was absent in the mandrill, spider monkey, and lemur. CRH was detected in the plasma of pregnant marmosets and rhesus monkeys. CRH was also detected in the fetal rhesus monkey, but at lower concentrations than in maternal plasma. CRH immunoreactivity was not detectable in the plasma of pregnant lemurs or in extracts of lemur placenta. In conclusion, a circulating binding protein for CRH exists in all species of apes but occurs variably among New World and Old World monkeys and is absent in lemurs. The variable occurrence of the CRH-BP does not support a role for this protein in the mechanism of parturition in primates. Maternal CRH is elevated in the pregnant marmoset and rhesus, and may play a role in the pregnancy of New and Old World monkeys.  相似文献   

17.
A yeast origin of replication is activated late in S phase   总被引:42,自引:0,他引:42  
The mechanism that causes large regions of eukaryotic chromosomes to remain unreplicated until late in S phase is not understood. We have found that 67 kb of telomere-adjacent DNA at the right end of chromosome V in S. cerevisiae is replicated late in S phase. An ARS element in this region, ARS501, was shown by two-dimensional gel analysis to be an active origin of replication. Kinetic analyses indicate that the rate of replication fork movement within this late region is similar to that in early replicating regions. Therefore, the delayed replication of the region is a consequence of late origin activation. The results also support the idea that the pattern of interspersed early and late replication along the chromosomes of higher eukaryotes is a consequence of the temporal regulation of origin activation.  相似文献   

18.
BrdU-33258 Hoechst techniques have been used to characterize DNA replication patterns in lymphocytes from human females with supernumerary or structurally abnormal X chromosomes. Fluorescence analysis permits identification of late replicating X chromosomes in a very high proportion of cells and affords a high resolution method for determining the interchange points of X-X and X-autosome translocations. Asynchrony among terminal replication patterns of multiple late replicating X chromosomes within an individual cell can occasionally be demonstrated. The arms of isochromosomes usually exhibit symmetrical fluorescence patterns, with replication terminating in bands Xq21 and Xq23 (predominant pattern) or in bands Xq25 and Xq27 (alternative pattern) in both arms. In the vast majority of lymphocytes containing a balanced X-13 or X-19 translocation, the normal X is late replicating. However, DNA synthesis in the translocation products occasionally appears somewhat delayed relative to that expected for an early replicating X, consistent with possible position effects on replication kinetics.  相似文献   

19.
Wei Q  Sun Z  He X  Tan T  Lu B  Guo X  Su B  Ji W 《PloS one》2011,6(9):e25052
Parthenogenetic embryonic stem cells are considered as a promising resource for regeneration medicine and powerful tools for developmental biology. A lot of studies have revealed that embryonic stem cells have distinct microRNA expression pattern and these microRNAs play important roles in self-renewal and pluripotency of embryonic stem cells. However, few studies concern about microRNA expression pattern in parthenogenetic embryonic stem cells, especially in non-human primate--the ideal model species for human, largely due to the limited rhesus monkey parthenogenetic embryonic stem cells (rpESCs) available and lack of systematic analysis of the basics of rpESCs. Here, we derived two novel rpESCs lines and characterized their microRNA signature by Solexa deep sequencing. These two novel rpESCs shared many properties with other primate ESCs, including expression of pluripotent markers, capacity to generate derivatives representative of all three germ layers in vivo and in vitro, maintaining of euploid karyotype even after long culture. Additionally, lack of some paternally expressed imprinted genes and identity of Single-nucleotide Polymorphism (SNP) compare to their oocyte donors support their parthenogenesis origin. By characterizing their microRNA signature, we identified 91 novel microRNAs, except those are also detected in other primate ESCs. Moreover, these two novel rpESCs display a unique microRNA signature, comparing to their biparental counterpart ESCs. Then we analyzed X chromosome status in these two novel rpESCs; results suggested that one of them possesses two active X chromosomes, the other possesses only one active X chromosome liking biparental female embryonic stem cells. Taken together, our novel rpESCs provide a new alternative to existing rhesus monkey embryonic stem cells, microRNA information expands rhesus monkey microRNA data and may help understanding microRNA roles in pluripotency and parthenogenesis.  相似文献   

20.
Rhesus monkey rhadinovirus (RRV), a simian gamma-2 herpesvirus closely related to the Kaposi sarcoma-associated herpesvirus, replicates lytically in cultured rhesus monkey fibroblasts and establishes persistence in B cells. Overlapping cosmid clones were generated that encompass the entire 130-kilobase-pair genome of RRV strain 26-95, including the terminal repeat regions required for its replication. Cloned RRV that was produced by cotransfection of overlapping cosmids spanning the entire RRV26-95 genome replicated with growth kinetics and to titers similar to those of the parental, uncloned, wild-type RRV26-95. Expression cassettes for secreted-engineered alkaline phosphatase (SEAP) and green fluorescent protein (GFP) were inserted upstream of the R1 gene, and the cosmid-based system for RRV genome reconstitution was used to generate replication-competent, recombinant RRV that expressed either the SEAP or GFP reporter gene. Using the SEAP and GFP recombinant RRVs, assays were developed to monitor RRV infection, neutralization, and replication. Heat-inactivated sera from rhesus monkeys that were naturally or experimentally infected with RRV were assayed for their ability to neutralize RRV-SEAP and RRV-GFP infectivity using rhesus monkey fibroblasts. Sera from RRV-positive monkeys, but not RRV-negative monkeys, were consistently able to neutralize RRV infectivity when assayed by the production of SEAP activity or by the ability to express GFP. The neutralizing activity was present in the immunoglobulin fraction. Of the 17 rhesus monkeys tested, sera from rhesus monkey 26-95, i.e., the monkey that yielded the RRV 26-95 isolate, had the highest titer of neutralizing activity against RRV26-95. This cosmid-based genetic system and the reporter virus neutralization assay will facilitate study of the contribution of individual RRV glycoproteins to entry into different cell types, particularly fibroblasts and B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号