首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
活性氧在植物非生物胁迫响应中功能的研究进展   总被引:1,自引:0,他引:1  
活性氧(ROS)是植物在响应非生物胁迫过程中不可或缺的组成部分。适量的ROS可通过参与信号转导途径调节植物响应多种胁迫,而过量的ROS致使植物处于氧化应激状态。植物中每个亚细胞室都含有一套独立的ROS产生和清除途径,各自的ROS稳态水平及氧化还原状态也在不断发生变化,表现出各自独特的ROS特征。本文综述了近年来有关ROS在植物非生物胁迫响应过程中功能的研究进展及其在介导快速系统信号转导中的作用,为深入研究ROS在植物非生物胁迫响应中的功能提供参考。  相似文献   

2.
叶绿体中活性氧的产生和清除机制   总被引:4,自引:0,他引:4  
陈花  吴俊林  李晓军 《现代生物医学进展》2008,8(10):1979-1981,1971
正常情况下植物细胞内活性氧(reactive oxygen species ROS)的产生和清除是平衡的,但是,一旦植物遭受环境胁迫,ROS的积累超过抗氧化剂防护系统清除能力,就会产生氧胁迫损伤细胞。由于叶绿体作为光合作用的场所与其他细胞器相比更易遭受氧化胁迫的伤害。因此,叶绿体进化了更强的防御机制调控电子传递链的氧化还原平衡及叶绿体基质中的氧化还原状态。活性氧具有双重效应.高浓度的活性氧对植物细胞有很强的毒害作用,低浓度时可充当信号分子参与植物的某些防卫反应过程,本文就叶绿体中活性氧的产生(三线态叶绿素、PSI和PSI I电子传递链)、网络清除(抗氧化剂,SOD,As—Glu循环系统,硫氧还蛋白)机制以及功能作用进行了综述。  相似文献   

3.
氧化还原信号转导的分子机制   总被引:5,自引:0,他引:5  
氧化还原调控参与多种生物学过程,包括细胞增殖、分化和凋亡等的细胞信号转导和基因表达调控,因而在细胞生命活动中扮演着非常重要的角色。细胞内各种氧化还原介质,如活性氧(reactive oxygen species,ROS)和活性氮(reactive nitrogen species,RNS)等,能对多种蛋白质在半胱氨酸残基上进行可逆性修饰。ROS或RNS对靶蛋白的氧化还原修饰方式主要有巯基/二硫键转换反应、S-亚硝基化及谷胱甘肽化等,这些修饰方式构成了胞内氧化还原信号转导的主要机制。  相似文献   

4.
以2’,7’-二氯二氢荧光素二乙酯(dichlorofluorescein diacetate,H2DCF-DA)为荧光探针孵育拟南芥叶表皮条,利用荧光光谱和激光共聚焦扫描显微技术,对高辐照蓝光诱导下叶肉细胞活性氧(reactive oxygen spe-cies,ROS)的生成,进行了分子识别和亚细胞定位检测。结果表明:植物细胞在蓝光诱导下,可以产生大量的ROS。过氧化氢酶清除实验表明:高辐照蓝光诱导产生的ROS,主要成分是H2O2,并且主要定位在叶绿体和细胞膜上。  相似文献   

5.
活性氧作为有氧代谢的副产物不断在植物体内产生。在正常的生长环境条件下,植物将产生活性氧(reaction oxygen species, ROS)作为信号代谢分子以调控不同的代谢反应,例如病毒防御、细胞程序性死亡和气孔开闭等;当氧化胁迫发生时,胞内活性氧稳态受到严重破坏,影响作物的生长发育,从而降低作物产量及品质。为了降低因过量活性氧对植物体所造成的伤害,植物体内进化出了两种活性氧清除系统:酶清除系统和非酶清除系统。本文就此对植物在生长发育过程中ROS的产生、利弊、清除机制以及在作物改良上应用的可能性进行了系统的讨论。  相似文献   

6.
随着纳米技术的不断进步,人们逐渐开发出能够模拟天然抗氧化酶催化活性的无机纳米材料.这些纳米材料能够模拟过氧化物酶、过氧化氢酶、超氧化物歧化酶等天然酶的催化过程,从而调控细胞的氧化还原水平.本文从金属化合物、贵金属以及碳基纳米酶的角度,阐述了它们对细胞内活性氧(ROS)的调控作用以及在各种氧化应激相关疾病治疗中的应用.作为一种新型的模拟酶,纳米酶有望在生物医学领域中为疾病治疗提供一种新的策略.  相似文献   

7.
近年来,以细胞内氧化还原平衡失调为重要诱因,具有铁依赖性和以脂质过氧化物堆积引起细胞膜损伤为主要特征的细胞铁死亡备受关注。越来越多的研究表明,细胞铁死亡在疾病发生及防治方面具有重要作用。胞红蛋白(cytoglobin,CYGB),又名星状细胞激活蛋白 (stellate cell activating protein, STAP),是一种珠蛋白,不仅能可逆地结合氧分子,储存和传递氧气,同时在其氨基酸序列中含2个半胱氨酸残基,可形成分子内部的二硫键,在感受细胞内氧化还原状态变动时,改变自身空间结构,引起生物活性及下游信号通路的变化。同时,CYGB还具有一氧化氮双加氧酶活性,能够清除过量一氧化氮与活性氧物质超氧阴离子反应生成的有毒ONOO-,防止其对线粒体功能的破坏。而细胞内活氧物质和线粒体是影响细胞铁死亡的重要因素。因此,本综述主要围绕CYGB清除活性氧物质及调控一氧化氮代谢等的作用机制,并结合我们最近有关CYGB通过p53-YAP1轴调控细胞内脂质代谢的研究进行阐述,提出CYGB通过参与细胞铁死亡调控来行使功能,为心血管功能,肝纤维化及癌症发生等相关疾病的预防和治疗提供重要的理论依据。  相似文献   

8.
植物中参与活性氧调控的基因网络   总被引:4,自引:0,他引:4  
宋莉璐  张荃 《生命科学》2007,19(3):346-352
植物体内活性氧(reactive oxygen species,ROS)是氧化还原反应的必然副产物,具极高的活性和毒性,从而对细胞产生毒害。同时,活性氧作为信号分子对很多生理过程诸如植物生长发育、细胞程序化死亡及生物和非生物胁迫应答起调控作用。植物中ROS双重作用的协调机制目前尚不明确,确定的是细胞中ROS维持于稳定水平需要精细的调节。拟南芥中至少包括152个基因组成的网络参与ROS的调控,该网络具高度的灵活性和互补性。本文综述了ROS网络中鉴定的一些关键基因及细胞学定位和协同作用,ROS信号转导,尤其是叶绿体中ROS信号的调控。  相似文献   

9.
酿酒酵母细胞在生长过程中会不断受到内外环境的氧化攻击。活性氧族物质的累积能够损害细胞中的脂质、DNA和蛋白质,从而会影响细胞的正常功能,严重者将造成细胞死亡。为了对抗氧化胁迫,酵母细胞在不断地适应过程中,进化出了较为完整的保护机制,呈现出多水平多层次的应激应答反应。细胞在非酶水平、蛋白质水平和基因水平上协同作用,共同完成了活性氧族物质的清除和胁迫信号的传递应答。本文对酵母细胞在氧化胁迫环境下的应答调控做了简要综述。  相似文献   

10.
随着纳米技术的不断进步,人们逐渐开发出能够模拟天然抗氧化酶催化活性的无机纳米材料.这些纳米材料能够模拟过氧化物酶、过氧化氢酶、超氧化物歧化酶等天然酶的催化过程,从而调控细胞的氧化还原水平.本文从金属化合物、贵金属以及碳基纳米酶的角度,阐述了它们对细胞内活性氧(ROS)的调控作用以及在各种氧化应激相关疾病治疗中的应用.作为一种新型的模拟酶,纳米酶有望在生物医学领域中为疾病治疗提供一种新的策略.  相似文献   

11.
活性氧(reactive oxygen species,ROS)是植物体代谢所产生的小分子化合物,既是生长发育和防御途径的关键调节因子,又是需氧代谢的有毒副产物。植物细胞的生理过程受一个被活性氧调节的氧化还原网状途径的调控,本文从植物体内ROS产生的部位与时空特异性、ROS信号与NO和Ca2+波信号的互作等方面综述了ROS信号对植物抗性的调控作用研究进展。  相似文献   

12.
氧化还原反应贯穿于细胞的整个生命历程,与细胞的新陈代谢息息相关。细胞的氧化还原平衡对细胞的能量代谢、生长代谢及合成代谢有着重要的影响。因此,细胞氧化还原状态的实时监测以及调控对于细胞工厂的高效生产有着重要意义。由于参与氧化还原反应的物质种类多、活性高、寿命短且相关代谢网络复杂,氧化还原状态的实时监测与调控一直是研究的热点与难点。本文中,笔者通过对影响细胞氧化还原反应的代谢物进行分析,以基因编码的荧光探针为主,介绍了检测细胞氧化还原状态的荧光探针,并阐述了调控氧化还原状态的常用方法及其在细胞工厂中的应用,为更好地实现细胞工厂的高效生物转化奠定基础。  相似文献   

13.
氧化还原与细胞凋亡的关联   总被引:3,自引:0,他引:3  
石荣  贺福初 《生命科学》2004,16(2):81-83,95
细胞内氧化还原状态与细胞凋亡相互关联的机理仍然存在很大争议。细胞内氧化还原状态的改变促进了氧自由基(ROS)的产生和凋亡诱导因子的激活,致使细胞凋亡的同时又加剧了细胞内氧化还原状态的改变。通过激活细胞凋亡信号激酶(ASK-1)、氧化还原转录因子NF-κB、AP-1及Caspase激活,揭示了细胞内氧化还原状态伴随细胞凋亡的不同阶段。  相似文献   

14.
植物活性氧的产生及其作用和危害   总被引:4,自引:0,他引:4  
活性氧(ROS)是一类由O2转化而来的自由基或具有高反应活性的离子或分子。植物消耗的O2约有1%在叶绿体、线粒体、过氧化物酶体等多种亚细胞单位中被转化成了ROS。ROS有益或有害取决于它在植物体内的浓度。低浓度的ROS作为第二信使能在植物细胞信号转导途径中介导多种应答反应,高浓度的ROS则引起生物大分子的氧化损伤甚至细胞死亡。植物体内ROS产生和清除之间的平衡十分重要,并由一套有效的酶促和非酶促抗氧化系统来监控。该文主要系统介绍了植物ROS的种类、产生部位、在信号转导中的作用及其对植物细胞造成的主要伤害等方面的研究进展,为利用基因工程手段来提高植物对环境胁迫的抗性提供信息和思路。  相似文献   

15.
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species,ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

16.
植物过氧化物酶体在活性氧信号网络中的作用   总被引:2,自引:0,他引:2  
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species, ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

17.
活性氧(reactive oxygen species,ROS)是生物体有氧代谢产生的一类活性含氧化合物的总称,主要包括O2·-、H2O2、·OH等,机体细胞通过多种途径维持ROS产生与消解的动态平衡。近年的研究揭示ROS参与细胞正常的生理过程,与细胞的增殖、分化及凋亡密切相关。不同刺激诱导细胞产生的内源性ROS可作为第二信使,通过改变氧化还原状态调节增殖、分化和凋亡相关的信号转导通路中多种靶分子的活性,最终决定细胞的命运。  相似文献   

18.
最近有关活性氧物质 (ROS)的研究取得了突飞猛进的进展,尤其是其作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡.为了避免ROS的毒性产生特异性的信号转导,ROS的产生与代谢必须被严格调控;其具体的调控机制一直是人们关注的焦点. 最近有关ROS区域化观点的提出解决了这一问题. NADPH是生成ROS的主要来源. 研究发现,NADPH氧化酶及其衍生的ROS存在于机体的多种组织内,且在细胞中呈区域化分布,对细胞内信号的精确调控具有至关重要的作用. NADPH一方面通过小窝/脂筏组装成功能型复合物,从而产生ROS区域化;另一方面,NADPH通过其不同亚细胞定位亚基与各种靶蛋白之间的相互作用,产生ROS特异性. 本文系统综述了NADPH衍生的ROS信号区域化,为进一步理解ROS信号在各种生理或病理过程的分子调控机制提供理论依据.  相似文献   

19.
利用酵母、线虫、果蝇、小鼠等模式生物进行的研究表明,细胞的衰老过程与氧化还原紧密相关.伴随衰老,细胞内GSSG水平升高,GSH、NADPH等水平降低,而氧化还原状态变化将直接影响蛋白质的功能,特别是氧化还原敏感的含巯基蛋白质的功能,从而影响细胞信号转导和细胞命运.氧化还原失衡可能是衰老发生的重要因素.本综述将从氧化还原平衡与衰老、氧化还原调控与信号转导及衰老、氧化损伤与衰老等方面阐述细胞氧化还原调控与衰老研究的最新进展,提出并探讨氧化还原平衡的维持、氧化还原平衡的系统调控及氧化还原调控的个体化等延缓衰老及健康衰老的新策略.  相似文献   

20.
活性氧诱导细胞凋亡   总被引:24,自引:1,他引:24  
细胞凋亡是细胞主动的衰老和死亡方式。细胞凋亡过程极其复杂,其生化机制还不十分清楚。用活性氧如H_2O_2、ONOO及脂质过氧化物等可直接诱导某些细胞发生凋亡,抗氧化剂对细胞凋亡有抑制作用。细胞内产生活性氧的部位主要是线粒体电子传递链、黄嘌呤—黄嘌呤氧化酶途径、磷脂酶A_2激活的花生四烯酸代谢途径及精氨酸-NO合成酶途径。外源性活性氧或通过内源性活性氧的生成,导致细胞内氧化还原状态的失衡,诱导某些基因的表达,引起凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号