首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Uptake through the Dopamine Transporter (DAT) is the primary mechanism of terminating dopamine signaling within the brain, thus playing an essential role in neuronal homeostasis. Deregulation of DAT function has been linked to several neurological and psychiatric disorders including ADHD, schizophrenia, Parkinson’s disease, and drug addiction. Over the last 15 years, several studies have revealed a plethora of mechanisms influencing the activity and cellular distribution of DAT; suggesting that fine-tuning of dopamine homeostasis occurs via an elaborate interplay of multiple pathways. Here, we show for the first time that the βγ subunits of G proteins regulate DAT activity. In heterologous cells and brain tissue, a physical association between Gβγ subunits and DAT was demonstrated by co-immunoprecipitation. Furthermore, in vitro pull-down assays using purified proteins established that this association occurs via a direct interaction between the intracellular carboxy-terminus of DAT and Gβγ. Functional assays performed in the presence of the non-hydrolyzable GTP analog GTP-γ-S, Gβγ subunit overexpression, or the Gβγ activator mSIRK all resulted in rapid inhibition of DAT activity in heterologous systems. Gβγ activation by mSIRK also inhibited dopamine uptake in brain synaptosomes and dopamine clearance from mouse striatum as measured by high-speed chronoamperometry in vivo. Gβγ subunits are intracellular signaling molecules that regulate a multitude of physiological processes through interactions with enzymes and ion channels. Our findings add neurotransmitter transporters to the growing list of molecules regulated by G-proteins and suggest a novel role for Gβγ signaling in the control of dopamine homeostasis.  相似文献   

2.
Observations of Golgi fragmentation upon introduction of G protein βγ (Gβγ) subunits into cells have implicated Gβγ in a pathway controlling the fission at the trans-Golgi network (TGN) of plasma membrane (PM)-destined transport carriers. However, the subcellular location where Gβγ acts to provoke Golgi fragmentation is not known. Additionally, a role for Gβγ in regulating TGN-to-PM transport has not been demonstrated. Here we report that constitutive or inducible targeting of Gβγ to the Golgi, but not other subcellular locations, causes phospholipase C- and protein kinase D-dependent vesiculation of the Golgi in HeLa cells; Golgi-targeted β1γ2 also activates protein kinase D. Moreover, the novel Gβγ inhibitor, gallein, and the Gβγ-sequestering protein, GRK2ct, reveal that Gβγ is required for the constitutive PM transport of two model cargo proteins, VSV-G and ss-HRP. Importantly, Golgi-targeted GRK2ct, but not a PM-targeted GRK2ct, also blocks protein transport to the PM. To further support a role for Golgi-localized Gβγ, endogenous Gβ was detected at the Golgi in HeLa cells. These results are the first to establish a role for Golgi-localized Gβγ in regulating protein transport from the TGN to the cell surface.  相似文献   

3.
The membrane-delimited activation of muscarinic K+ channels by G protein βγ subunits plays a prominent role in the inhibitory synaptic transmission in the heart. These channels are thought to be heterotetramers comprised of two homologous subunits, GIRK1 and CIR, both members of the family of inwardly rectifying K+ channels. Here, we demonstrate that muscarinic K+ channels in neonatal rat atrial myocytes exhibit four distinct gating modes. In intact myocytes, after muscarinic receptor activation, the different gating modes were distinguished by differences in both the frequency of channel opening and the mean open time of the channel, which accounted for a 76-fold increase in channel open probability from mode 1 to mode 4. Because of the tetrameric architecture of the channel, the hypothesis that each of the four gating modes reflects binding of a different number of Gβγ subunits to the channel was tested, using recombinant Gβ1γ5. Gβ1γ5 was able to control the equilibrium between the four gating modes of the channel in a manner consistent with binding of Gβγ to four equivalent and independent sites in the protein complex. Surprisingly, however, Gβ1γ5 lacked the ability to stabilize the long open state of the channel that is responsible for the augmentation of the mean open time in modes 3 and 4 after muscarinic receptor stimulation. The modal regulation of muscarinic K+ channel gating by Gβγ provides the atrial cells with at least two major advantages: the ability to filter out small inputs from multiple membrane receptors and yet the ability to create the gradients of information necessary to control the heart rate with great precision.  相似文献   

4.
5.
6.
Although most heterotrimeric G proteins are thought to dissociate into Gα and Gβγ subunits upon activation, the evidence in the Gi/o family has long been inconsistent and contradictory. The Gi/o protein family mediates inhibition of cAMP production and regulates the activity of ion channels. On the basis of experimental evidence, both heterotrimer dissociation and rearrangement have been postulated as crucial steps of Gi/o protein activation and signal transduction. We have now investigated the process of Gi/o activation in living cells directly by two-photon polarization microscopy and indirectly by observations of G protein-coupled receptor kinase-derived polypeptides. Our observations of existing fluorescently labeled and non-modified Gαi/o constructs indicate that the molecular mechanism of Gαi/o activation is affected by the presence and localization of the fluorescent label. All investigated non-labeled, non-modified Gi/o complexes dissociate extensively upon activation. The dissociated subunits can activate downstream effectors and are thus likely to be the major activated Gi/o form. Constructs of Gαi/o subunits fluorescently labeled at the N terminus (GAP43-CFP-Gαi/o) seem to faithfully reproduce the behavior of the non-modified Gαi/o subunits. Gαi constructs labeled within the helical domain (Gαi-L91-YFP) largely do not dissociate upon activation, yet still activate downstream effectors, suggesting that the dissociation seen in non-modified Gαi/o proteins is not required for downstream signaling. Our results appear to reconcile disparate published data and settle a long running dispute.  相似文献   

7.
There is now solid evidence that cell-to-cell trafficking of certain proteins and RNAs plays a critical role in trans-cellular regulation of gene expression to coordinate cellular differentiation and development. Such trafficking also is critical for viral infection and plant defense. The mechanisms of trafficking remain poorly understood. Although some proteins may move between cells by diffusion, many proteins and RNAs move in a highly regulated fashion. Regulation is likely achieved through interactions between distinct protein or RNA motifs and cellular factors. Some motifs and factors have been identified. One of the major focuses for future studies is to identify all motifs and their cognate factors and further elucidate their roles in trafficking between specific cells. With increasing information from such studies, we should be able to develop an understanding of the mechanisms that regulate trafficking of various proteins and RNAs across all and specific cellular boundaries. On the basis of such mechanistic knowledge, we can further investigate how the trafficking machinery has evolved to regulate developmental and physiological processes in a plant, how pathogens have co-evolved to use this machinery for systemic spread in a plant, and how plants use this machinery for counterdefense.  相似文献   

8.
Neutrophils play important roles in host innate immunity and various inflammation-related diseases. In addition, neutrophils represent an excellent system for studying directional cell migration. However, neutrophils are terminally differentiated cells that are short lived and refractory to transfection; thus, they are not amenable for existing gene silencing techniques. Here we describe the development of a method to silence gene expression efficiently in primary mouse neutrophils. A mouse stem cell virus-based retroviral vector was modified to express short hairpin RNAs and fluorescent marker protein at high levels in hematopoietic cells and used to infect mouse bone marrow cells prior to reconstitution of the hematopoietic system in lethally irradiated mice. This method was used successfully to silence the expression of Gβ1 and/or Gβ2 in mouse neutrophils. Knockdown of Gβ2 appeared to affect primarily the directionality of neutrophil chemotaxis rather than motility, whereas knockdown of Gβ1 had no significant effect. However, knockdown of both Gβ1 and Gβ2 led to significant reduction in motility and responsiveness. In addition, knockdown of Gβ1 but not Gβ2 inhibited the ability of neutrophils to kill ingested bacteria, and only double knockdown resulted in significant reduction in bacterial phagocytosis. Therefore, we have developed a short hairpin RNA-based method to effectively silence gene expression in mouse neutrophils for the first time, which allowed us to uncover divergent roles of Gβ1 and Gβ2 in the regulation of neutrophil functions.  相似文献   

9.
The present model of G protein activation by G protein-coupled receptors exclusively localizes their activation and function to the plasma membrane (PM). Observation of the spatiotemporal response of G protein subunits in a living cell to receptor activation showed that 6 of the 12 members of the G protein gamma subunit family translocate specifically from the PM to endomembranes. The gamma subunits translocate as betagamma complexes, whereas the alpha subunit is retained on the PM. Depending on the gamma subunit, translocation occurs predominantly to the Golgi complex or the endoplasmic reticulum. The rate of translocation also varies with the gamma subunit type. Different gamma subunits, thus, confer distinct spatiotemporal properties to translocation. A striking relationship exists between the amino acid sequences of various gamma subunits and their translocation properties. gamma subunits with similar translocation properties are more closely related to each other. Consistent with this relationship, introducing residues conserved in translocating subunits into a non-translocating subunit results in a gain of function. Inhibitors of vesicle-mediated trafficking and palmitoylation suggest that translocation is diffusion-mediated and controlled by acylation similar to the shuttling of G protein subunits (Chisari, M., Saini, D. K., Kalyanaraman, V., and Gautam, N. (2007) J. Biol. Chem. 282, 24092-24098). These results suggest that the continual testing of cytosolic surfaces of cell membranes by G protein subunits facilitates an activated cell surface receptor to direct potentially active G protein betagamma subunits to intracellular membranes.  相似文献   

10.
Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gαi1(G42R) binding to GDP·AlF4 or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gαq(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.  相似文献   

11.
12.
Adrenoceptors receptors (ARs) play a pivotal role in regulating cardiovascular response to catecholamines during stress. β2ARs, prototypical G protein-coupled receptors (GPCRs), expressed in animal hearts, display dual coupling to both Gs and Gi proteins to control the adenylyl cyclase-cAMP dependent protein kinase A (PKA) pathway to regulate contraction responses. Here, we showed that the β2AR coupling to Gi proteins was agonist dose-dependent and occurred only at high concentrations in mouse cardiac myocytes. Both the β2AR-induced PKA activity, measured by fluorescence resonance energy transfer (FRET) imaging, and the increase in myocyte contraction rate displayed sensitivity to the Gi inhibitor pertussis toxin (PTX). Further studies revealed that activated β2ARs underwent PKA phosphorylation at a broad range of agonist concentrations. Disruption of the PKA phosphorylation sites on the β2AR blocked receptor/Gi coupling. However, a sufficient β2AR/Gi coupling was also dependent on the G protein-coupled receptor kinase (GRK)-mediated phosphorylation of the receptors, which only occurred at high concentrations of agonist (≥100 nm). Disruption of the GRK phosphorylation sites on the β2AR blocked receptor internalization and coupling to Gi proteins, probably by preventing the receptor''s transportation to access Gi proteins. Furthermore, neither PKA nor GRK site mutated receptors displayed sensitivity to the Gi-specific inhibitor, GiCT. Together, our studies revealed distinct roles of PKA and GRK phosphorylation of the β2AR for agonist dose-dependent coupling to Gi proteins in cardiac myocytes, which may protect cells from overstimulation under high concentrations of catecholamines.  相似文献   

13.
Protein phosphatase 2A (PP2A) is a heterotrimeric enzyme consisting of a scaffold subunit (A), a catalytic subunit (C), and a variable regulatory subunit (B). The regulatory B subunits determine the substrate specificity and subcellular localization of the PP2A holoenzyme. Here, we demonstrate that the subcellular localization of the B56γ3 regulatory subunit is regulated in a cell cycle-specific manner. Notably, B56γ3 becomes enriched in the nucleus at the G1/S border and in S phase. The S phase-specific nuclear enrichment of B56γ3 is accompanied by increases of nuclear A and C subunits and nuclear PP2A activity. Overexpression of B56γ3 promotes nuclear localization of the A and C subunits, whereas silencing both B56γ2 and B56γ3 blocks the S phase-specific increase in the nuclear localization and activity of PP2A. In NIH3T3 cells, B56γ3 overexpression reduces p27 phosphorylation at Thr-187, concomitantly elevates p27 protein levels, delays the G1 to S transition, and retards cell proliferation. Consistently, knockdown of endogenous B56γ3 expression reduces p27 protein levels and increases cell proliferation in HeLa cells. These findings demonstrate that the dynamic nuclear distribution of the B56γ3 regulatory subunit controls nuclear PP2A activity, which regulates cell cycle controllers, such as p27, to restrain cell cycle progression, and may be responsible for the tumor suppressor function of PP2A.  相似文献   

14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号