首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自噬对胞内感染病原体的双重作用   总被引:1,自引:0,他引:1  
自噬(autophagy)是细胞维持稳态的一种机制[1,2].在自噬发生过程中,来源不明的单层膜凹陷形成杯状双层膜的结构,包裹细胞质和细胞器部分,形成有双层膜的自噬体(autophagosome).自噬体随之与溶酶体融合形成自噬溶酶体,其中的细胞物质被溶酶体酶降解,降解后产生的氨基酸可以被细胞重新利用,参与物质的再循环.  相似文献   

2.
细胞自噬是一种在真核生物中十分保守的溶酶体依赖性胞内降解途径,通过形成双层膜结构包裹细胞质内的生物大分子或者细胞器运送到溶酶体进行降解。在实验中发现,Ctk1蛋白对自噬过程有重要调节作用。Ctk1的缺失或者失活都会导致自噬过程不能正常发生,同时也会影响酵母CVT途径。自噬相关蛋白Atg3与Atg8的结合受到Ctk1的调控影响。因此,Ctk1在自噬过程中自噬体的形成中发挥了重要作用,揭示了Ctk1的新的功能作用。  相似文献   

3.
植物细胞自噬研究进展   总被引:1,自引:0,他引:1  
细胞自噬是一类依赖于溶酶体和液泡的蛋白质降解途径。在动物细胞中, 靶物质通过自噬体包裹被运送到溶酶体中,由特定的水解酶降解; 而植物和酵母细胞中该过程在液泡内进行。近年来, 在模式植物拟南芥(Arabidopsis thaliana)中鉴定到多个关键ATG基因, 它们对植物细胞自噬体的形成及自噬调控起到关键作用。该文全面综述了植物细胞自噬的调控及其在植物逆境胁迫中的生理功能。  相似文献   

4.
自噬体和溶酶体是细胞维持稳态的重要系统,自噬体负责底物的识别和包裹,溶酶体负责底物的降解。溶酶体功能紊乱会导致细胞内物质不能被正常降解、致病性底物发生蓄积,进而诱发多种重大疾病,如溶酶体蓄积病(lysosomal storage disorders, LSDs)、神经退行性疾病和代谢性疾病等;相反,促进溶酶体生成,增强其降解功能则具有改善疾病的作用。因此,揭示并阐明溶酶体生成的调控机制是重要的科学问题。本文对溶酶体生成调控领域近年的研究进展进行综述。  相似文献   

5.
自噬是高度保守的细胞内降解途径。在此过程中,部分细胞质和细胞器被双层膜的囊泡包裹形成自噬体,随后与溶酶体融合并降解被吞噬的物质。降解产物被释放到细胞质中重新用于必需的物质和能量合成。本文主要关注自噬的晚期阶段,即从自噬体合成结束到溶酶体再生过程。通过对这一过程相关基因及蛋白产物的研究,初步揭示了此过程的分子机制。  相似文献   

6.
自噬是在细胞受到胞内应激或饥饿条件下,依赖于溶酶体将胞内异常蛋白质以及受损细胞器降解的过程。内体是由细胞内吞形成的单层膜结构细胞器,它可以内吞进入细胞的异常蛋白质将其送入自噬体或通过内溶酶体–自噬溶酶体途径降解。由于自噬体与内体在形态与功能上相互联系又有相似之处,从而构成内溶酶体–自噬溶酶体系统。在阿尔茨海默症(Alzheimer’s disease,AD)患者的神经元中,两种异常蛋白质[β淀粉样物质(βamyloid,Aβ)和过度磷酸化的Tau蛋白]可以通过内溶酶体–自噬溶酶体系统清除;而当此系统功能受阻时,神经元中出现异常自噬体与内体形成的颗粒空泡变性体,导致AD病理改变加重。因此,内溶酶体–自噬溶酶体在阿尔茨海默病中扮演着重要角色。越来越多的研究结果提示,对内溶酶体–自噬溶酶体系统的调控可能为阿尔茨海默病的治疗提供新靶点和方向。  相似文献   

7.
自噬(autophagy)是真核生物长期进化形成的一种高度保守的细胞内物质降解和周转途径,通过形成双层膜结构的自噬体将包裹其中的待降解大分子物质,如受损伤的蛋白质、蛋白质复合物和细胞器,运送至液泡或溶酶体进行降解并产生可循环利用的降解产物。细胞自噬在植物生长发育和环境应答等过程中发挥重要作用。在拟南芥(Arabidop...  相似文献   

8.
自噬是高度保守的细胞内降解途径.在此过程中,部分细胞质和细胞器被双层膜的囊泡包裹形成自噬体,随后与溶酶体融合并降解被吞噬的物质.降解产物被释放到细胞质中重新用于必需的物质和能量合成.本文主要关注自噬的晚期阶段,即从自噬体合成结束到溶酶体再生过程.通过对这一过程相关基因及蛋白产物的研究,初步揭示了此过程的分子机制.  相似文献   

9.
自噬是细胞中高度保守的物质降解过程,细胞内大分子物质和细胞器等经双层膜包裹运送至溶酶体,被溶酶体酶降解产生小分子物质,实现细胞内物质再循环的过程。自噬是小鼠着床前胚胎发育不可缺少的。同时,自噬在iPS细胞诱导和体细胞核移植等重编程过程中也有重要的作用。现综述自噬基本过程及相关的主要分子机制,并讨论了自噬对早期胚胎发育和体细胞重编程的作用。  相似文献   

10.
细胞自噬是广泛存在于真核细胞内的一种胞内物质降解途径。细胞内的待降解蛋白复合物、受损伤细胞器以及入侵的病原体等被自噬泡包裹后运送至溶酶体,然后被溶酶体酸性水解酶消化,并释放到胞浆中以维持细胞的自我稳态。随着2016年诺贝尔生理医学奖授予自噬研究领域的学者,自噬研究越来越受到科研人员的重视。本文整理总结了自噬进程中的自噬信号调节、自噬体以及自噬溶酶体形成过程,同时也讨论了自噬过程中相关的分子信号通路。  相似文献   

11.
ULK1 (unc-51 like autophagy activating kinase 1)是一种哺乳动物丝/苏氨酸激酶,其作为自噬起始复合物的关键分子可介导细胞发生经典自噬反应。经典自噬反应是细胞通过由一系列自噬相关蛋白质介导的自噬溶酶体途径,将废弃或受损的蛋白质、细胞器经过自噬体的包裹后与溶酶体结合,继而使蛋白质、细胞器在溶酶体内降解。因此, ULK1介导的经典自噬反应是细胞质量控制的重要组成部分。除了介导经典自噬反应以外,ULK1也发挥着独立于自噬反应之外的重要作用,比如:促进细胞凋亡、强化磷酸戊糖途径、调控固有免疫反应等。此外, ULK1在糖脂代谢、红细胞形成、内质网应激、肿瘤、神经系统疾病中也发挥着重要作用。鉴于ULK1的重要性,本综述围绕ULK1蛋白激酶参与的经典自噬反应和不依赖自噬的反应及其介导的生理、病理和疾病过程展开论述。  相似文献   

12.
自噬广泛存在于真核细胞中,与机体生理和病理过程的发生发展密切联系.自噬主要参与长寿蛋白质的降解,以清除受损或多余的蛋白质和细胞器,是细胞自我降解的过程之一.自噬通常被分为三类:大自噬、分子伴侣介导的自噬和小自噬.自噬溶酶体途径(ALP)功能障碍导致蛋白质聚集,从而产生异常蛋白质和无效细胞器的积累,这些特征是阿尔茨海默病(Alzheimer disease,AD)、帕金森病(Parkinson disease,PD)和亨廷顿病等神经退行性疾病(Huntington disease,HD)的标志.自噬的过程受一系列复杂的信号分子的调控,其中一个主要调节因子是转录因子EB(TFEB),是转录因子MiT家族的成员之一.研究表明,TFEB可通过积极调节自噬体形成和自噬体-溶酶体融合参与自噬,此外它还通过溶酶体胞吐作用提高细胞内的清除作用.因此作为自噬溶酶体生物发生的主要调节因子,TFEB已被广泛证明激活后可以从病理方面改善这些疾病.我们回顾分析ALP和TFEB的调节及其对神经退行性疾病的影响,同时展望ALP和TFEB在疾病病理中的复杂作用及其治疗意义.  相似文献   

13.
真核生物通过双层膜结构包裹细胞内受损的蛋白、细胞器或外源物质, 经溶酶体(或液泡)将内含物降解并进行循环利用, 这种高度保守的生物学过程称为自噬。活性氧是细胞有氧代谢的副产物, 作为一种信号分子广泛参与不同生物学过程的调控。研究表明, 真核生物中自噬与活性氧之间存在密切联系。该文结合近年的研究进展, 对植物细胞中活性氧的种类及作用和自噬的分子机制等进行概述, 旨在探讨活性氧对自噬的调控作用。  相似文献   

14.
自噬是一种在进化上保守的溶酶体依赖的降解途径.在缺乏营养的条件下,细胞会产生自噬体与溶酶体融合形成自噬溶酶体,并会通过自噬来降解自身物质.之后溶酶体会从自噬溶酶体再生,这个进化上保守的过程称为自噬性溶酶体再生(ALR),该过程由长时程饥饿中mTOR重激活引起.我们课题组在之前的研究工作中筛选出ARF1的GAP蛋白ASAP1参与调解ALR.本文在之前工作的基础上,发现ARF1会在ALR过程中转位到自噬溶酶体上.敲低ASAP1或者过表达连有GFP标签的ARF1的GTP形式,会抑制mTOR的重激活以及ALR.因此,ARF1以及ASAP1是通过调节mTOR的重激活而调控ALR发生.  相似文献   

15.
LC3(包括LC3/GABARAP蛋白家族所有成员)的脂质化修饰是细胞自噬过程中的关键事件. LC3完成脂质化修饰后,由水溶性形式转化为膜结合形式,在自噬小体的形成、自噬底物的招募和自噬小体-溶酶体融合等阶段均发挥重要作用.包括营养状态和病原菌入侵在内的多种细胞内外刺激信号均可参与调控LC3的脂质化修饰过程.近年来的研究发现,脂质化的LC3不仅可以靶向细胞内双层膜的自噬小体,也可以靶向细胞内多种单层膜结构,如吞噬体和溶酶体等,参与调控细胞的内吞和微自噬等生物学过程.本文将围绕LC3脂质化修饰的机制和功能综述近年来的相关研究进展.  相似文献   

16.
真核细胞内膜系统由细胞内相互联系的膜状细胞器组成,包括外泌体的生成和自噬过程,对应激反应和维持细胞内稳态起着重要作用。外泌体是含有蛋白质与核酸内容物的多泡体分泌到体外形成的胞外囊泡,而自噬是溶酶体依赖性的降解和循环再利用的过程。研究发现,外泌体的生成和自噬之间有着共同的分子机制,二者存在实质性的交互通信。对外泌体的生成和自噬的过程,包括二者与溶酶体之间的关系进行综述。  相似文献   

17.
缺血性脑卒中是由脑血管梗塞引起的急性脑血管病,具有较高的发病率、致残率和致死率。研究发现,过度自噬或自噬不足均可导致细胞损伤。自噬包括自噬体的形成和成熟、自噬体与溶酶体融合、自噬底物在自噬溶酶体内的降解和清除,这些过程呈连续状态则称为自噬流。研究发现,脑缺血可导致自噬体与溶酶体间发生融合障碍,从而引发自噬流损伤。细胞内膜融合由3种核心组分介导,即N-乙基马来酰亚胺敏感因子(N-ethylmaleimide sensitive factor,NSF) ATP酶、可溶性NSF黏附蛋白(soluble NSF attachment protein,SNAP)及可溶性NSF黏附蛋白受体(soluble NSF attachment protein receptors,SNAREs)。当SNAREs介导自噬体与溶酶体融合后以非活性的复合体形式存留于自噬溶酶体膜,须被NSF再激活为单体后方可发挥新一轮的膜融合介导作用,而NSF是唯一可再激活SNAREs的ATP酶。新近研究表明,脑缺血可显著抑制NSF ATP酶活性,导致其对SNAREs再激活减少,这可能是自噬体与溶酶体间发生融合障碍并导致神经元自噬...  相似文献   

18.
细胞自噬是一类依赖于溶酶体的蛋白质降解途径,在真核生物中非常保守。自噬能够感受细胞所处环境的各种信号,如氨基酸、糖等营养物质的缺乏、p H值或渗透压的改变等,使细胞做出应激反应,在恶劣环境下存活。同时,自噬过程会清除细胞内错误折叠或聚集的蛋白质,受损或老化细胞器以维持细胞内部稳态。自噬发生时,细胞内部的胞质组分被包裹在自噬体中,自噬体与溶酶体融合进行降解,产生新的小分子,如氨基酸等供细胞重新利用。一系列研究发现自噬的信号通路非常复杂,已报道有40个自噬相关蛋白(Atg蛋白)参与了自噬体的形成过程。Atg蛋白按照一定步骤发挥功能,同时相互影响,利用内膜系统构建成一个闭合的双层膜结构。将对细胞自噬研究的历史、自噬分子机制的前沿进展进行综述。  相似文献   

19.
细胞自噬是一种重要且保守的细胞内降解过程,通过形成双层膜的自噬体包裹细胞内容物进行降解。内质网来源的COPII囊泡被认为是饥饿诱导的应激过程中自噬体的膜源。探究了COPII囊泡衣被蛋白SEC24A在巨自噬通路中的作用。利用siRNA干扰技术敲低SEC24A的表达,EBSS饥饿处理对照组和SEC24A敲低组HeLa细胞2 h诱导自噬发生,经Western blot和免疫荧光实验检测自噬底物蛋白p62和自噬标志蛋白LC3-II的蛋白水平变化,以确定SEC24A是否参与自噬。通过RFP-GFP-LC3串联荧光检测自噬体和自噬溶酶体的数目,利用蛋白酶K保护实验验证自噬缺陷发生在自噬体闭合之前或者之后,利用免疫荧光实验检测敲低SEC24A对自噬通路上ATG复合物的影响,以确定SEC24A调控自噬通路的位点。通过免疫共沉淀实验验证SEC24A与自噬相关蛋白ATG9A是否存在相互作用。蛋白检测实验发现,饥饿条件下与对照细胞相比,敲低SEC24A细胞内自噬底物蛋白p62积累,而标志蛋白LC3-II减少。RFP-GFP-LC3串联荧光实验显示,敲低SEC24A后自噬体及自噬溶酶体的数目均减少。蛋白酶K保护实验显示,SEC24A敲低细胞中受膜结构保护的p62和GFP-LC3均减少,提示SEC24A作用位点在自噬体闭合之前。免疫荧光实验显示,敲低SEC24A的表达后ATG14L、ATG16L1点状结构减少,而ATG9A点状结构的数量没有明显变化,提示SEC24A作用于ATG14L、ATG16L1上游。免疫共沉淀实验显示SEC24A与ATG9A存在相互作用。研究结果不仅有助于深化对自噬体形成过程和分子机制的了解,也为全面解读COPII囊泡及其衣被蛋白在自噬中的重要作用提供了信息。  相似文献   

20.
脑卒中是由脑血管阻塞或出血引发的急性脑血管病,约84%的临床脑卒中患者由脑缺血引起。研究表明,自噬广泛参与并显著影响脑卒中病理生理进程。自噬是一个将陈旧蛋白质、损伤细胞器及多余胞质组分等呈递给溶酶体进行降解的代谢过程,其包括自噬的激活、自噬体的形成和成熟、自噬体与溶酶体融合、自噬产物在自噬溶酶体内消化和降解等过程。自噬流通常被定义为自噬/溶酶体信号机制。最近发现,自噬流障碍是导致缺血性脑卒中后神经元损伤的重要原因,而在自噬过程中任一步骤发生障碍均可导致自噬流损伤。本文重点对自噬体-溶酶体融合的机制,以及该机制在缺血性脑卒中后发生障碍的致病机理进行详细阐述,以期基于自噬体-溶酶体融合机制对神经元自噬流进行调节,进而诱导缺血性脑卒中后的神经保护。本文可为脑卒中病理机制研究指明方向,为脑卒中治疗探寻新的线索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号