首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finnish samples have been extensively utilized in studying single-gene disorders, where the founder effect has clearly aided in discovery, and more recently in genome-wide association studies of complex traits, where the founder effect has had less obvious impacts. As the field starts to explore rare variants’ contribution to polygenic traits, it is of great importance to characterize and confirm the Finnish founder effect in sequencing data and to assess its implications for rare-variant association studies. Here, we employ forward simulation, guided by empirical deep resequencing data, to model the genetic architecture of quantitative polygenic traits in both the general European and the Finnish populations simultaneously. We demonstrate that power of rare-variant association tests is higher in the Finnish population, especially when variants’ phenotypic effects are tightly coupled with fitness effects and therefore reflect a greater contribution of rarer variants. SKAT-O, variable-threshold tests, and single-variant tests are more powerful than other rare-variant methods in the Finnish population across a range of genetic models. We also compare the relative power and efficiency of exome array genotyping to those of high-coverage exome sequencing. At a fixed cost, less expensive genotyping strategies have far greater power than sequencing; in a fixed number of samples, however, genotyping arrays miss a substantial portion of genetic signals detected in sequencing, even in the Finnish founder population. As genetic studies probe sequence variation at greater depth in more diverse populations, our simulation approach provides a framework for evaluating various study designs for gene discovery.  相似文献   

2.
There is heightened interest in using next-generation sequencing technologies to identify rare variants that influence complex human diseases and traits. Meta-analysis is essential to this endeavor because large sample sizes are required for detecting associations with rare variants. In this article, we provide a comprehensive overview of statistical methods for meta-analysis of sequencing studies for discovering rare-variant associations. Specifically, we discuss the calculation of relevant summary statistics from participating studies, the construction of gene-level association tests, the choice of transformation for quantitative traits, the use of fixed-effects versus random-effects models, and the removal of shadow association signals through conditional analysis. We also show that meta-analysis based on properly calculated summary statistics is as powerful as joint analysis of individual-participant data. In addition, we demonstrate the performance of different meta-analysis methods by using both simulated and empirical data. We then compare four major software packages for meta-analysis of rare-variant associations—MASS, RAREMETAL, MetaSKAT, and seqMeta—in terms of the underlying statistical methodology, analysis pipeline, and software interface. Finally, we present PreMeta, a software interface that integrates the four meta-analysis packages and allows a consortium to combine otherwise incompatible summary statistics.  相似文献   

3.
There is great interest in detecting associations between human traits and rare genetic variation. To address the low power implicit in single-locus tests of rare genetic variants, many rare-variant association approaches attempt to accumulate information across a gene, often by taking linear combinations of single-locus contributions to a statistic. Using the right linear combination is key—an optimal test will up-weight true causal variants, down-weight neutral variants, and correctly assign the direction of effect for causal variants. Here, we propose a procedure that exploits data from population controls to estimate the linear combination to be used in an case-parent trio rare-variant association test. Specifically, we estimate the linear combination by comparing population control allele frequencies with allele frequencies in the parents of affected offspring. These estimates are then used to construct a rare-variant transmission disequilibrium test (rvTDT) in the case-parent data. Because the rvTDT is conditional on the parents’ data, using parental data in estimating the linear combination does not affect the validity or asymptotic distribution of the rvTDT. By using simulation, we show that our new population-control-based rvTDT can dramatically improve power over rvTDTs that do not use population control information across a wide variety of genetic architectures. It also remains valid under population stratification. We apply the approach to a cohort of epileptic encephalopathy (EE) trios and find that dominant (or additive) inherited rare variants are unlikely to play a substantial role within EE genes previously identified through de novo mutation studies.  相似文献   

4.
《Genetics》2015,200(4):1051-1060
The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California—San Francisco, undertook genome-wide genotyping of >100,000 subjects that constitute the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. The project, which generated >70 billion genotypes, represents the first large-scale use of the Affymetrix Axiom Genotyping Solution. Because genotyping took place over a short 14-month period, creating a near-real-time analysis pipeline for experimental assay quality control and final optimized analyses was critical. Because of the multi-ethnic nature of the cohort, four different ethnic-specific arrays were employed to enhance genome-wide coverage. All assays were performed on DNA extracted from saliva samples. To improve sample call rates and significantly increase genotype concordance, we partitioned the cohort into disjoint packages of plates with similar assay contexts. Using strict QC criteria, the overall genotyping success rate was 103,067 of 109,837 samples assayed (93.8%), with a range of 92.1–95.4% for the four different arrays. Similarly, the SNP genotyping success rate ranged from 98.1 to 99.4% across the four arrays, the variation depending mostly on how many SNPs were included as single copy vs. double copy on a particular array. The high quality and large scale of genotype data created on this cohort, in conjunction with comprehensive longitudinal data from the KP electronic health records of participants, will enable a broad range of highly powered genome-wide association studies on a diversity of traits and conditions.  相似文献   

5.
6.
The joint analysis of multiple traits has recently become popular since it can increase statistical power to detect genetic variants and there is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases. Currently, most of existing methods use all of the traits for testing the association between multiple traits and a single variant. However, those methods for association studies may lose power in the presence of a large number of noise traits. In this paper, we propose an “optimal” maximum heritability test (MHT-O) to test the association between multiple traits and a single variant. MHT-O includes a procedure of deleting traits that have weak or no association with the variant. Using extensive simulation studies, we compare the performance of MHT-O with MHT, Trait-based Association Test uses Extended Simes procedure (TATES), SUM_SCORE and MANOVA. Our results show that, in all of the simulation scenarios, MHT-O is either the most powerful test or comparable to the most powerful test among the five tests we compared.  相似文献   

7.
Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner’s curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner’s curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated.  相似文献   

8.
In genome‐wide association studies, quality control (QC) of genotypes is important to avoid spurious results. It is also important to maintain long‐term data integrity, particularly in settings with ongoing genotyping (e.g. estimation of genomic breeding values). Here we discuss snpqc , a fully automated pipeline to perform QC analyses of Illumina SNP array data. It applies a wide range of common quality metrics with user‐defined filtering thresholds to generate a comprehensive QC report and a filtered dataset, including a genomic relationship matrix, ready for further downstream analyses which make it amenable for integration in high‐throughput environments. snpqc also builds a database to store genotypic, phenotypic and quality metrics to ensure data integrity and the option of integrating more samples from subsequent runs. The program is generic across species and array designs, providing a convenient interface between the genotyping laboratory and downstream genome‐wide association study or genomic prediction.  相似文献   

9.
We develop expressions for the power to detect associations between parental genotypes and offspring phenotypes for quantitative traits. Three different “indirect” experimental designs are considered: full-sib, half-sib, and full-sib–half-sib families. We compare the power of these designs to detect genotype–phenotype associations relative to the common, “direct,” approach of genotyping and phenotyping the same individuals. When heritability is low, the indirect designs can outperform the direct method. However, the extra power comes at a cost due to an increased phenotyping effort. By developing expressions for optimal experimental designs given the cost of phenotyping relative to genotyping, we show how the extra costs associated with phenotyping a large number of individuals will influence experimental design decisions. Our results suggest that indirect association studies can be a powerful means of detecting allelic associations in outbred populations of species for which genotyping and phenotyping the same individuals is impractical and for life history and behavioral traits that are heavily influenced by environmental variance and therefore best measured on groups of individuals. Indirect association studies are likely to be favored only on purely economical grounds, however, when phenotyping is substantially less expensive than genotyping. A web-based application implementing our expressions has been developed to aid in the design of indirect association studies.  相似文献   

10.
Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype effects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants, there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and continuous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data to demonstrate that our method, which we refer to as the Gene Association with Multiple Traits (GAMuT) test, provides increased power over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of Arteriopathy.  相似文献   

11.
Sequencing studies are increasingly being conducted to identify rare variants associated with complex traits. The limited power of classical single-marker association analysis for rare variants poses a central challenge in such studies. We propose the sequence kernel association test (SKAT), a supervised, flexible, computationally efficient regression method to test for association between genetic variants (common and rare) in a region and a continuous or dichotomous trait while easily adjusting for covariates. As a score-based variance-component test, SKAT can quickly calculate p values analytically by fitting the null model containing only the covariates, and so can easily be applied to genome-wide data. Using SKAT to analyze a genome-wide sequencing study of 1000 individuals, by segmenting the whole genome into 30 kb regions, requires only 7 hr on a laptop. Through analysis of simulated data across a wide range of practical scenarios and triglyceride data from the Dallas Heart Study, we show that SKAT can substantially outperform several alternative rare-variant association tests. We also provide analytic power and sample-size calculations to help design candidate-gene, whole-exome, and whole-genome sequence association studies.  相似文献   

12.
Genome-wide association studies (GWAS) have identified >500 common variants associated with quantitative metabolic traits, but in aggregate such variants explain at most 20–30% of the heritable component of population variation in these traits. To further investigate the impact of genotypic variation on metabolic traits, we conducted re-sequencing studies in >6,000 members of a Finnish population cohort (The Northern Finland Birth Cohort of 1966 [NFBC]) and a type 2 diabetes case-control sample (The Finland-United States Investigation of NIDDM Genetics [FUSION] study). By sequencing the coding sequence and 5′ and 3′ untranslated regions of 78 genes at 17 GWAS loci associated with one or more of six metabolic traits (serum levels of fasting HDL-C, LDL-C, total cholesterol, triglycerides, plasma glucose, and insulin), and conducting both single-variant and gene-level association tests, we obtained a more complete understanding of phenotype-genotype associations at eight of these loci. At all eight of these loci, the identification of new associations provides significant evidence for multiple genetic signals to one or more phenotypes, and at two loci, in the genes ABCA1 and CETP, we found significant gene-level evidence of association to non-synonymous variants with MAF<1%. Additionally, two potentially deleterious variants that demonstrated significant associations (rs138726309, a missense variant in G6PC2, and rs28933094, a missense variant in LIPC) were considerably more common in these Finnish samples than in European reference populations, supporting our prior hypothesis that deleterious variants could attain high frequencies in this isolated population, likely due to the effects of population bottlenecks. Our results highlight the value of large, well-phenotyped samples for rare-variant association analysis, and the challenge of evaluating the phenotypic impact of such variants.  相似文献   

13.

Background

Vulnerabilities to dependence on addictive substances are substantially heritable complex disorders whose underlying genetic architecture is likely to be polygenic, with modest contributions from variants in many individual genes. “Nontemplate” genome wide association (GWA) approaches can identity groups of chromosomal regions and genes that, taken together, are much more likely to contain allelic variants that alter vulnerability to substance dependence than expected by chance.

Methodology/Principal Findings

We report pooled “nontemplate” genome-wide association studies of two independent samples of substance dependent vs control research volunteers (n = 1620), one European-American and the other African-American using 1 million SNP (single nucleotide polymorphism) Affymetrix genotyping arrays. We assess convergence between results from these two samples using two related methods that seek clustering of nominally-positive results and assess significance levels with Monte Carlo and permutation approaches. Both “converge then cluster” and “cluster then converge” analyses document convergence between the results obtained from these two independent datasets in ways that are virtually never found by chance. The genes identified in this fashion are also identified by individually-genotyped dbGAP data that compare allele frequencies in cocaine dependent vs control individuals.

Conclusions/Significance

These overlapping results identify small chromosomal regions that are also identified by genome wide data from studies of other relevant samples to extents much greater than chance. These chromosomal regions contain more genes related to “cell adhesion” processes than expected by chance. They also contain a number of genes that encode potential targets for anti-addiction pharmacotherapeutics. “Nontemplate” GWA approaches that seek chromosomal regions in which nominally-positive associations are found in multiple independent samples are likely to complement classical, “template” GWA approaches in which “genome wide” levels of significance are sought for SNP data from single case vs control comparisons.  相似文献   

14.
Recent genome-wide association studies (GWAS) with metabolomics data linked genetic variation in the human genome to differences in individual metabolite levels. A strong relevance of this metabolic individuality for biomedical and pharmaceutical research has been reported. However, a considerable amount of the molecules currently quantified by modern metabolomics techniques are chemically unidentified. The identification of these unknown metabolites is still a demanding and intricate task, limiting their usability as functional markers of metabolic processes. As a consequence, previous GWAS largely ignored unknown metabolites as metabolic traits for the analysis. Here we present a systems-level approach that combines genome-wide association analysis and Gaussian graphical modeling with metabolomics to predict the identity of the unknown metabolites. We apply our method to original data of 517 metabolic traits, of which 225 are unknowns, and genotyping information on 655,658 genetic variants, measured in 1,768 human blood samples. We report previously undescribed genotype–metabotype associations for six distinct gene loci (SLC22A2, COMT, CYP3A5, CYP2C18, GBA3, UGT3A1) and one locus not related to any known gene (rs12413935). Overlaying the inferred genetic associations, metabolic networks, and knowledge-based pathway information, we derive testable hypotheses on the biochemical identities of 106 unknown metabolites. As a proof of principle, we experimentally confirm nine concrete predictions. We demonstrate the benefit of our method for the functional interpretation of previous metabolomics biomarker studies on liver detoxification, hypertension, and insulin resistance. Our approach is generic in nature and can be directly transferred to metabolomics data from different experimental platforms.  相似文献   

15.
Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.  相似文献   

16.
Increasingly large Genome-Wide Association Studies (GWAS) have yielded numerous variants associated with many complex traits, motivating the development of “fine mapping” methods to identify which of the associated variants are causal. Additionally, GWAS of the same trait for different populations are increasingly available, raising the possibility of refining fine mapping results further by leveraging different linkage disequilibrium (LD) structures across studies. Here, we introduce multiple study causal variants identification in associated regions (MsCAVIAR), a method that extends the popular CAVIAR fine mapping framework to a multiple study setting using a random effects model. MsCAVIAR only requires summary statistics and LD as input, accounts for uncertainty in association statistics using a multivariate normal model, allows for multiple causal variants at a locus, and explicitly models the possibility of different SNP effect sizes in different populations. We demonstrate the efficacy of MsCAVIAR in both a simulation study and a trans-ethnic, trans-biobank fine mapping analysis of High Density Lipoprotein (HDL).  相似文献   

17.
Next Generation Sequencing Technology has revolutionized our ability to study the contribution of rare genetic variation to heritable traits. However, existing single-marker association tests are underpowered for detecting rare risk variants. A more powerful approach involves pooling methods that combine multiple rare variants from the same gene into a single test statistic. Proposed pooling methods can be limited because they generally assume high-quality genotypes derived from deep-coverage sequencing, which may not be available. In this paper, we consider an intuitive and computationally efficient pooling statistic, the cumulative minor-allele test (CMAT). We assess the performance of the CMAT and other pooling methods on datasets simulated with population genetic models to contain realistic levels of neutral variation. We consider study designs ranging from exon-only to whole-gene analyses that contain noncoding variants. For all study designs, the CMAT achieves power comparable to that of previously proposed methods. We then extend the CMAT to probabilistic genotypes and describe application to low-coverage sequencing and imputation data. We show that augmenting sequence data with imputed samples is a practical method for increasing the power of rare-variant studies. We also provide a method of controlling for confounding variables such as population stratification. Finally, we demonstrate that our method makes it possible to use external imputation templates to analyze rare variants imputed into existing GWAS datasets. As proof of principle, we performed a CMAT analysis of more than 8 million SNPs that we imputed into the GAIN psoriasis dataset by using haplotypes from the 1000 Genomes Project.  相似文献   

18.
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple—even distinct—traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10−8) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10−7) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes.  相似文献   

19.
To date, genome-wide association studies have identified thousands of statistically-significant associations between genetic variants, and phenotypes related to a myriad of traits and diseases. A key goal for human-genetics research is to translate these associations into functional mechanisms. Popular gene-set analysis tools, like MAGMA, map variants to genes they might affect, and then integrate genome-wide association study data (that is, variant-level associations for a phenotype) to score genes for association with a phenotype. Gene scores are subsequently used in competitive gene-set analyses to identify biological processes that are enriched for phenotype association. By default, variants are mapped to genes in their proximity. However, many variants that affect phenotypes are thought to act at regulatory elements, which can be hundreds of kilobases away from their target genes. Thus, we explored the idea of augmenting a proximity-based mapping scheme with publicly-available datasets of regulatory interactions. We used MAGMA to analyze genome-wide association study data for ten different phenotypes, and evaluated the effects of augmentation by comparing numbers, and identities, of genes and gene sets detected as statistically significant between mappings. We detected several pitfalls and confounders of such “augmented analyses”, and introduced ways to control for them. Using these controls, we demonstrated that augmentation with datasets of regulatory interactions only occasionally strengthened the enrichment for phenotype association amongst (biologically-relevant) gene sets for different phenotypes. Still, in such cases, genes and regulatory elements responsible for the improvement could be pinpointed. For instance, using brain regulatory-interactions for augmentation, we were able to implicate two acetylcholine receptor subunits involved in post-synaptic chemical transmission, namely CHRNB2 and CHRNE, in schizophrenia. Collectively, our study presents a critical approach for integrating regulatory interactions into gene-set analyses for genome-wide association study data, by introducing various controls to distinguish genuine results from spurious discoveries.  相似文献   

20.
High-throughput genotyping of large numbers of lines remains a key challenge in plant genetics, requiring geneticists and breeders to find a balance between data quality and the number of genotyped lines under a variety of different existing genotyping technologies when resources are limited. In this work, we are proposing a new imputation pipeline (“HBimpute”) that can be used to generate high-quality genomic data from low read-depth whole-genome-sequence data. The key idea of the pipeline is the use of haplotype blocks from the software HaploBlocker to identify locally similar lines and subsequently use the reads of all locally similar lines in the variant calling for a specific line. The effectiveness of the pipeline is showcased on a dataset of 321 doubled haploid lines of a European maize landrace, which were sequenced at 0.5X read-depth. The overall imputing error rates are cut in half compared to state-of-the-art software like BEAGLE and STITCH, while the average read-depth is increased to 83X, thus enabling the calling of copy number variation. The usefulness of the obtained imputed data panel is further evaluated by comparing the performance of sequence data in common breeding applications to that of genomic data generated with a genotyping array. For both genome-wide association studies and genomic prediction, results are on par or even slightly better than results obtained with high-density array data (600k). In particular for genomic prediction, we observe slightly higher data quality for the sequence data compared to the 600k array in the form of higher prediction accuracies. This occurred specifically when reducing the data panel to the set of overlapping markers between sequence and array, indicating that sequencing data can benefit from the same marker ascertainment as used in the array process to increase the quality and usability of genomic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号