首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shiga toxin-converting bacteriophages are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7, but data on the occurrence and distribution of such phages as free particles in nature were not available. An experimental approach has been developed to detect the presence of the Shiga toxin 2 (Stx 2)-encoding bacteriophages in sewage. The Stx 2 gene was amplified by PCR from phages concentrated from 10-ml samples of sewage. Moreover, the phages carrying the Stx 2 gene were detected in supernatants from bacteriophage enrichment cultures by using an Stx 2-negative E. coli O157:H7 strain infected with phages purified from volumes of sewage as small as 0.02 ml. Additionally, the A subunit of Stx 2 was detected in the supernatants of the bacteriophage enrichment cultures, which also showed cytotoxic activity for Vero cells. By enrichment of phages concentrated from different volumes of sewage and applying the most-probable-number technique, it was estimated that the number of phages infectious for E. coli O157:H7 and carrying the Stx 2 gene was in the range of 1 to 10 per ml of sewage from two different origins. These values were approximately 1% of all phages infecting E. coli O157:H7.  相似文献   

2.
Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.  相似文献   

3.
The behavior outside the gut of seeded Escherichia coli O157:H7, naturally occurring E. coli, somatic coliphages, bacteriophages infecting O157:H7, and Shiga toxin 2 (Stx2)-encoding bacteriophages was studied to determine whether the last persist in the environment more successfully than their host bacteria. The ratios between the numbers of E. coli and those of the different bacteriophages were clearly lower in river water than in sewage of the area, whereas the ratios between the numbers of the different phages were similar. In addition, the numbers of bacteria decreased between 2 and 3 log units in in situ survival experiments performed in river water, whereas the numbers of phages decreased between 1 and 2 log units. Chlorination and pasteurization treatments that reduced by approximately 4 log units the numbers of bacteria reduced by less than 1 log unit the numbers of bacteriophages. Thus, it can be concluded that Stx2-encoding phages persist longer than their host bacteria in the water environment and are more resistant than their host bacteria to chlorination and heat treatment.  相似文献   

4.
Lactobacillus gasseri is an endogenous species of the human gastrointestinal tract and vagina. With recent advances in microbial taxonomy, phylogenetics, and genomics, L. gasseri is recognized as an important commensal and is increasingly being used in probiotic formulations. L. gasseri strain ADH is lysogenic and harbors two inducible prophages. In this study, prophage ϕadh was found to spontaneously induce in broth cultures to populations of ∼107 PFU/ml by stationary phase. The ϕadh prophage-cured ADH derivative NCK102 was found to harbor a new, second inducible phage, vB_Lga_jlb1 (jlb1). Phage jlb1 was sequenced and found to be highly similar to the closely related phage LgaI, which resides as two tandem prophages in the neotype strain L. gasseri ATCC 33323. The common occurrence of multiple prophages in L. gasseri genomes, their propensity for spontaneous induction, and the high degree of homology among phages within multiple species of Lactobacillus suggest that temperate bacteriophages likely contribute to horizontal gene transfer (HGT) in commensal lactobacilli. In this study, the host ranges of phages ϕadh and jlb1 were determined against 16 L. gasseri strains. The transduction range and the rate of spontaneous transduction were investigated in coculture experiments to ascertain the degree to which prophages can promote HGT among a variety of commensal and probiotic lactobacilli. Both ϕadh and jlb1 particles were confirmed to mediate plasmid transfer. As many as ∼103 spontaneous transductants/ml were obtained. HGT by transducing phages of commensal lactobacilli may have a significant impact on the evolution of bacteria within the human microbiota.  相似文献   

5.
Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3 × 10−8 to 2 × 10−6, 1 × 10−8 to 4 × 10−8, and <4 × 10−9 to 4 × 10−8 per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7 × 10−4 to 1 × 10−3, 9 × 10−4 to 3 × 10−3, and 5 × 10−4 to 4 × 10−3 for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.  相似文献   

6.
Genomic analysis has revealed heterogeneity among bacterial 16S rRNA gene sequences within a single species; yet the cause(s) remains uncertain. Generalized transducing bacteriophages have recently gained recognition for their abundance as well as their ability to affect lateral gene transfer and to harbor bacterial 16S rRNA gene sequences. Here, we demonstrate the ability of broad-host-range, generalized transducing phages to acquire 16S rRNA genes and gene sequences. Using PCR and primers specific to conserved regions of the 16S rRNA gene, we have found that generalized transducing phages (D3112, UT1, and SN-T), but not specialized transducing phages (D3), acquired entire bacterial 16S rRNA genes. Furthermore, we show that the broad-host-range, generalized transducing phage SN-T is capable of acquiring the 16S rRNA gene from two different genera: Sphaerotilus natans, the host from which SN-T was originally isolated, and Pseudomonas aeruginosa. In sequential infections, SN-T harbored only 16S rRNA gene sequences of the final host as determined by restriction fragment length polymorphism analysis. The frequency of 16S rRNA gene sequences in SN-T populations was determined to be 1 × 10−9 transductants/PFU. Our findings further implicate transduction in the horizontal transfer of 16S rRNA genes between different species or genera of bacteria.  相似文献   

7.
Escherichia coli WG5, the strain recommended by the International Organization for Standardization (ISO) to detect somatic coliphages, was transformed to F+ by introducing the plasmid Famp, which rendered it capable of simultaneously detecting both somatic and F-specific coliphages. Indeed, this strain, CB390, proved as effective in detecting similar numbers of phages as the sum of somatic and F-specific bacteriophages detected by the host strains recommended by both the ISO and the U.S. Environmental Protection Agency standardized methods.  相似文献   

8.
Dissemination of Shiga toxin (Stx)-encoding bacteriophages is the most likely mechanism for the spread of Stx-encoding genes and the emergence of new Stx-producing Escherichia coli (STEC). Biofilm has been reported to be a place where horizontal gene transfer by plasmid conjugation and DNA transformation may occur, and in this study, horizontal gene transfer by transduction has been demonstrated. Transfer of Stx-encoding bacteriophages to potentially pathogenic E. coli in biofilm was observed at both 20°C and 37°C. The infection rates were higher at 37°C than at 20°C. To our knowledge, this study is the first to show lateral gene transfer in biofilm mediated by a temperate bacteriophage. The study shows that the biofilm environment can be suitable for transduction events and can thereby be an environment for the emergence of new pathogenic E. coli.  相似文献   

9.
The inactivation of naturally occurring bacterial indicators and bacteriophages by thermal treatment of a dewatered sludge and raw sewage was studied. The sludge was heated at 80°C, and the sewage was heated at 60°C. In both cases phages were significantly more resistant to thermal inactivation than bacterial indicators, with the exception of spores of sulfite-reducing clostridia. Somatic coliphages and phages infecting Bacteroides fragilis were significantly more resistant than F-specific RNA phages. Similar trends were observed in sludge and sewage. The effects of thermal treatment on various phages belonging to the three groups mentioned above and on various enteroviruses added to sewage were also studied. The results revealed that the variability in the resistance of phages agreed with the data obtained with the naturally occurring populations and that the phages that were studied were more resistant to heat treatment than the enteroviruses that were studied. The phages survived significantly better than Salmonella choleraesuis, and the extents of inactivation indicated that naturally occurring bacteriophages can be used to monitor the inactivation of Escherichia coli and Salmonella.  相似文献   

10.
The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmental Escherichia coli isolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen of E. coli O22, differing only in side-chain α-d-glucosylation in the former, mediated by a gtr locus on the chromosome. Spontaneous mutations of E. coli 4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions of E. coli 4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.  相似文献   

11.
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥104 CFU · g−1 of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <104 CFU · g−1 of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.  相似文献   

12.
Members of the enterobacterial genus Serratia are ecologically widespread, and some strains are opportunistic human pathogens. Bacteriophage ϕMAM1 was isolated on Serratia plymuthica A153, a biocontrol rhizosphere strain that produces the potently bioactive antifungal and anticancer haterumalide oocydin A. The ϕMAM1 phage is a generalized transducing phage that infects multiple environmental and clinical isolates of Serratia spp. and a rhizosphere strain of Kluyvera cryocrescens. Electron microscopy allowed classification of ϕMAM1 in the family Myoviridae. Bacteriophage ϕMAM1 is virulent, uses capsular polysaccharides as a receptor, and can transduce chromosomal markers at frequencies of up to 7 × 10−6 transductants per PFU. We also demonstrated transduction of the complete 77-kb oocydin A gene cluster and heterogeneric transduction of a plasmid carrying a type III toxin-antitoxin system. These results support the notion of the potential ecological importance of transducing phages in the acquisition of genes by horizontal gene transfer. Phylogenetic analyses grouped ϕMAM1 within the ViI-like bacteriophages, and genomic analyses revealed that the major differences between ϕMAM1 and other ViI-like phages arise in a region encoding the host recognition determinants. Our results predict that the wider genus of ViI-like phages could be efficient transducing phages, and this possibility has obvious implications for the ecology of horizontal gene transfer, bacterial functional genomics, and synthetic biology.  相似文献   

13.
This study was conducted to examine the rate of contamination and the molecular characteristics of enteric bacteria isolated from a selection of food sources in Vietnam. One hundred eighty raw food samples were tested; 60.8% of meat samples and 18.0% of shellfish samples were contaminated with Salmonella spp., and more than 90% of all food sources contained Escherichia coli. The isolates were screened for antibiotic resistance against 15 antibiotics, and 50.5% of Salmonella isolates and 83.8% of E. coli isolates were resistant to at least one antibiotic. Isolates were examined for the presence of mobile genetic elements conferring antibiotic resistance. Fifty-seven percent of E. coli and 13% of Salmonella isolates were found to contain integrons, and some isolates contained two integrons. Sequencing results revealed that the integrons harbored various gene cassettes, including aadA1, aadA2, and aadA5 (resistance to streptomycin and spectinomycin), aacA4 (resistance to aminoglycosides), the dihydrofolate reductase gene cassettes dhfrXII, dfrA1, and dhfrA17 (trimethoprim resistance), the beta-lactamase gene blaPSE1 (ampicillin resistance), and catB3 (chloramphenicol resistance). Plasmids were also detected in all 23 antibiotic-resistant Salmonella isolates and in 33 E. coli isolates. Thirty-five percent of the Salmonella isolates and 76% of the E. coli isolates contained plasmids of more than 95 kb, and some of the isolates contained two large plasmids. Conjugation experiments showed the successful transfer of all or part of the antibiotic resistance phenotypes among the Salmonella and E. coli food isolates. Our results show that enteric bacteria in raw food samples from Vietnam contain a pool of mobile genetic elements and that the transfer of antibiotic resistance can readily occur between similar bacteria.  相似文献   

14.
Despite an increasing interest in horizontal gene transfer in bacteria, the role of generalized transduction in this process has not been well investigated yet. Certainly one of the reasons is that only a small fraction of general transducing bacteriophages have been characterized, because many bacterial hosts needed for propagation and identification are not culturable or are simply unknown. A method for host-independent detection of transducing bacteriophages was developed. Phage-encapsulated DNA was used as a template for PCR amplification of 16S ribosomal DNA using primers specific for the 16S rRNA genes of most eubacteria. Sequencing of the cloned amplification products permits the identification of the host bacteria. The Salmonella phage P22 was used as an example. Applying this method to a sample of the supernatant of the mixed liquor in the aeration tank of an activated sludge treatment works revealed the presence of transducing phages infecting several bacterial species for which such phages have not yet been described. This method is suitable for estimating the contribution of generalized transduction to horizontal gene transfer in different habitats.  相似文献   

15.
Sunlight inactivation in fresh (river) water of fecal coliforms, enterococci, Escherichia coli, somatic coliphages, and F-RNA phages from waste stabilization pond (WSP) effluent was compared. Ten experiments were conducted outdoors in 300-liter chambers, held at 14°C (mean river water temperature). Sunlight inactivation (kS) rates, as a function of cumulative global solar radiation (insolation), were all more than 10 times higher than the corresponding dark inactivation (kD) rates in enclosed (control) chambers. The overall kS ranking (from greatest to least inactivation) was as follows: enterococci > fecal coliforms ≥ E. coli > somatic coliphages > F-RNA phages. In winter, fecal coliform and enterococci inactivation rates were similar but, in summer, enterococci were inactivated far more rapidly. In four experiments that included freshwater-raw sewage mixtures, enterococci survived longer than fecal coliforms (a pattern opposite to that observed with the WSP effluent), but there was little difference in phage inactivation between effluents. In two experiments which included simulated estuarine water and seawater, sunlight inactivation of all of the indicators increased with increasing salinity. Inactivation rates in freshwater, as seen under different optical filters, decreased with the increase in the spectral cutoff (50% light transmission) wavelength. The enterococci and F-RNA phages were inactivated by a wide range of wavelengths, suggesting photooxidative damage. Inactivation of fecal coliforms and somatic coliphages was mainly by shorter (UV-B) wavelengths, a result consistent with photobiological damage. Fecal coliform repair mechanisms appear to be activated in WSPs, and the surviving cells exhibit greater sunlight resistance in natural waters than those from raw sewage. In contrast, enterococci appear to suffer photooxidative damage in WSPs, rendering them susceptible to further photooxidative damage after discharge. This suggests that they are unsuitable as indicators of WSP effluent discharges to natural waters. Although somatic coliphages are more sunlight resistant than the other indicators in seawater, F-RNA phages are the most resistant in freshwater, where they may thus better represent enteric virus survival.  相似文献   

16.
Predation by bacteriophages is thought to control bacterial numbers and facilitate gene transfer among bacteria in the biosphere. A thorough understanding of phage population dynamics is therefore necessary if their significance in natural environments is to be fully appreciated. Here we describe the in situ population dynamics of three separate phage populations predating on separate bacterial species, living on the surface of field-grown sugar beet (Beta vulgaris var. Amethyst), as recorded over a 9-month period. The distributions of the three phage populations were different and fluctuated temporally in 1996 (peak density, ~103 PFU g−1). One of these populations, predating on the indigenous phytosphere bacterium Serratia liquefaciens CP6, consisted of six genetically distinct DNA phages that varied in relative abundance to the extent that an apparent temporal succession was observed between the two most abundant phages, ΦCP6-1 and ΦCP6-4.  相似文献   

17.
The summer occurrence of human enteroviruses and rotaviruses in the bacteriologically clean area of the Ria de Aveiro, a coastal marine lagoon, prompted the question of the assessment of the virological quality of recreational waters and shellfish raising beds. Enteroviruses were present in surface water at a density of 3 pfu 10 l–1 and were accumulated in sediments and, especially, in cockles where they reached concentrations 2 to 310log units greater. Rotaviruses were detected at one10log unit below the density of enteroviruses in sediments and cockles and were not detected in water. Four bacteriophage systems were assayed as indicators of human enteric viruses: somatic coliphages ofE.coli C, sexual and sexual-RNA coliphages plated onSalmonella WG49 and phages againstBacteroides fragilis HSP40. The results obtained from 2 lagoon stations sampled in summer, autumn and winter showed that the four systems failed to indicate the presence of enteroviruses and rotaviruses in water, sediment and shellfish samples. The absence of phages ofB. fragilis HSP40 in all types of samples taken from the lagoon, but not from the residual waters of the treatment station, suggests that they may suffer a strong negative pressure in this ecosystem as their proportion to the coliphages in the cockles deviated strongly from the ratio of 1100 to 11000 observed at the sewage outfall. In fact, no correlation was observed between these phages and enteric viruses or coliphages. Alternatively, it is possible that the importance of diffuse faecal pollution and the interference of faecal pollutants of animal origin, including migratory sea birds which are abundant in winter, can alter the proportions of the faecal bacteriophages beyond recognition. It is apparent that bacteriophage monitoring of the health risk linked to the occurrence of viruses in the marine environment is not yet fully resolved, what may leave viral quality assessment dependent on direct detection of human enteric virus.  相似文献   

18.
The relationship between the survival of enteric viral pathogens and their indicators (coliform bacteria and coliphages) is not well understood. We compared the survival rates of feline calicivirus (FCV), Escherichia coli, and a male-specific RNA coliphage MS2 at 4, 25, and 37°C for up to 28 days in dechlorinated water. The survival rates of E. coli and FCV, a surrogate of noroviruses (NV), had a high degree of correlation at 4 and 25°C, while MS2 phage survived significantly longer (P < 0.05) at these two temperatures. At 37°C, the survival rates for all three organisms were highly correlated. Decimal reduction values indicating the number of days needed for 90% reduction in titer (D values) decreased for all three organisms as storage temperatures increased. FCV had the shortest D value among all three organisms at all temperatures investigated. These findings indicate that F-specific RNA phages may be useful indicators of NV in the environment.  相似文献   

19.
Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. Previous studies have shown that high densities of free and infectious Stx phages are found in environments polluted with feces and also in food samples. Taken together, these two findings suggest that Stx phages could be excreted through feces, but this has not been tested to date. In this study, we purified Stx phages from 100 fecal samples from 100 healthy individuals showing no enteric symptoms. The phages retrieved from each sample were then quantified by quantitative PCR (qPCR). In total, 62% of the samples carried Stx phages, with an average value of 2.6 × 104 Stx phages/g. This result confirms the excretion of free Stx phages by healthy humans. Moreover, the Stx phages from feces were able to propagate in enrichment cultures of stx-negative Escherichia coli (strains C600 and O157:H7) and in Shigella sonnei, indicating that at least a fraction of the Stx phages present were infective. Plaque blot hybridization revealed lysis by Stx phages from feces. Our results confirm the presence of infectious free Stx phages in feces from healthy persons, possibly explaining the environmental prevalence observed in previous studies. It cannot be ruled out, therefore, that some positive stx results obtained during the molecular diagnosis of Shiga toxin-producing Escherichia coli (STEC)-related diseases using stool samples are due to the presence of Stx phages.  相似文献   

20.
This study was carried out in order to investigate human enteric virus contaminants in mussels from three sites on the west coast of Sweden, representing a gradient of anthropogenic influence. Mussels were sampled monthly during the period from February 2000 to July 2001 and analyzed for adeno-, entero-, Norwalk-like, and hepatitis A viruses as well as the potential viral indicator organisms somatic coliphages, F-specific RNA bacteriophages, bacteriophages infecting Bacteroides fragilis, and Escherichia coli. The influence of environmental factors such as water temperature, salinity, and land runoff on the occurrence of these microbes was also included in this study. Enteric viruses were found in 50 to 60% of the mussel samples, and there were no pronounced differences between the samples from the three sites. E. coli counts exceeded the limit for category A for shellfish sanitary safety in 40% of the samples from the sites situated in fjords. However, at the site in the outer archipelago, this limit was exceeded only once, in March 2001, when extremely high levels of atypical indole-negative strains of E. coli were registered at all three sites. The environmental factors influenced the occurrence of viruses and phages differently, and therefore, it was hard to find a coexistence between them. This study shows that, for risk assessment, separate modeling should be done for every specific area, with special emphasis on environmental factors such as temperature and land runoff. The present standard for human fecal contamination, E. coli, seems to be an acceptable indicator of only local sanitary contamination; it is not a reliable indicator of viral contaminants in mussels. To protect consumers and get verification of “clean” mussels, it seems necessary to analyze for viruses as well. The use of a molecular index of the human contamination of Swedish shellfish underscores the need for reference laboratories with high-technology facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号