首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormone receptor (TR) mediates the crucial effects of the thyroid hormone (T3) on cellular growth, development, and differentiation. Decreased expression or inactivating somatic mutations of TRs have been found in human cancers of the liver, breast, lung, and thyroid. The mechanisms of TR-associated carcinogenesis are still not clear. To establish the function of TRβ in thyroid cancer cell proliferation, we constructed a recombinant adenovirus vector, AdTRβ, which expresses human TRβ1 cDNA. Thyroid cancer cell lines in which TRβ protein levels were significantly decreased as compared to intact thyroid tissues were infected with AdTRβ and the function of TRβ on cell proliferation and migration was analyzed. Ligand-bound TRβ induced HDAC1 and HDAC3 dissociation from, and histone acetylation associated with the RhoB promoter and enhanced the expression of RhoB mRNA and protein. In AdTRβ-infected cells, T3 and farnesyl transferase inhibitor (FTI)-treatment induced the distribution of RhoB on the cell membrane and enhanced the abundance of active GTP-bound RhoB. This RhoB protein led to p21-associated cell-cycle arrest in the G0/G1 phase, following inhibition of cell proliferation and invasion. Conversely, lowering cellular RhoB by small interfering RNA knockdown in AdTRβ-infected cells led to downregulation of p21 and inhibited cell-cycle arrest. The growth of BHP18-21v tumor xenografts in vivo was significantly inhibited by AdTRβ injection with FTIs-treatment, as compared to control virus-injected tumors. This novel signaling pathway triggered by ligand-bound TRβ provides insight into possible mechanisms of proliferation and invasion of thyroid cancer and may provide new therapeutic targets for thyroid cancers.  相似文献   

2.
3.
While in vitro studies have demonstrated that a glucocorticoid receptor (GR) splice isoform, β-isoform of human GR (hGRβ), acts as a dominant-negative inhibitor of the classic hGRα and confers glucocorticoid resistance, the in vivo function of hGRβ is poorly understood. To this end, we created an adeno-associated virus (AAV) to express hGRβ in the mouse liver under the control of the hepatocyte-specific promoter. Genome-wide expression analysis of mouse livers showed that hGRβ significantly increased the expression of numerous genes, many of which are involved in endocrine system disorders and the inflammatory response. Physiologically, hGRβ antagonized GRα''s function and attenuated hepatic gluconeogenesis through downregulation of phosphoenolpyruvate carboxykinase (PEPCK) in wild-type (WT) mouse liver. Interestingly, however, hGRβ did not repress PEPCK in GR liver knockout (GRLKO) mice. In contrast, hGRβ regulates the expression of STAT1 in the livers of both WT and GRLKO mice. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that hGRβ binds to the intergenic glucocorticoid response element (GRE) of the STAT1 gene. Furthermore, treatment with RU486 inhibited the upregulation of STAT1 mediated by hGRβ. Finally, our array data demonstrate that hGRβ regulates unique components of liver gene expression in vivo by both GRα-dependent and GRα-independent mechanisms.  相似文献   

4.
5.
6.
7.
8.
9.
In vitro expansion of adult human islet β cells is an attractive solution for the shortage of tissue for cell replacement therapy of type 1 diabetes. Using a lineage tracing approach we have demonstrated that β-cell-derived (BCD) cells rapidly dedifferentiate in culture and can proliferate for up to 16 population doublings. Dedifferentiation is associated with changes resembling epithelial-mesenchymal transition (EMT). The WNT pathway has been shown to induce EMT and plays key roles in regulating replication and differentiation in many cell types. Here we show that BCD cell dedifferentiation is associated with β-catenin translocation into the nucleus and activation of the WNT pathway. Inhibition of β-catenin expression in expanded BCD cells using short hairpin RNA resulted in growth arrest, mesenchymal-epithelial transition, and redifferentiation, as judged by activation of β-cell gene expression. Furthermore, inhibition of β-catenin expression synergized with redifferentiation induced by a combination of soluble factors, as judged by an increase in the number of C-peptide-positive cells. Simultaneous inhibition of the WNT and NOTCH pathways also resulted in a synergistic effect on redifferentiation. These findings, which were reproducible in cells derived from multiple human donors, suggest that inhibition of the WNT pathway may contribute to a therapeutically applicable way for generation of functional insulin-producing cells following ex-vivo expansion.  相似文献   

10.
βKlotho is a regulator in multiple metabolic processes, while its role in cancer remains unclear. We found the expression of βKlotho was down-regulated in human hepatocellular carcinoma tissues compared with that in paired adjacent non-tumourous liver tissues. Hepatoma cells also showed decreased expression of βKlotho compared with normal hepatocyte cells. Reintroduction of βKlotho into hepatoma cells inhibited their proliferation. The anti-proliferative effect of βKlotho might be linked with G1 to S phase arrest, which was mediated by Akt/GSK-3β/cyclin D1 signaling, since forced expression βKlotho reduced the phosphorylation level of Akt and GSK-3β and induced down-regulation of cyclin D1. Furthermore, βKlotho overexpression could inhibit tumorgenesis, while constitutively activated Akt could override the suppressive effects of βKlotho in vivo. These data suggest βKlotho suppresses tumor growth in hepatocellular carcinoma.  相似文献   

11.

Background

Platelet-derived growth factor receptor β (PDGFRβ) is a tyrosine kinase receptor known to affect vascular development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRβ functions cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization.

Methodology/Principal Findings

In order to investigate the role of PDGFRβ in zebrafish vascular development, we cloned the highly conserved zebrafish homolog of PDGFRβ. We found that pdgfrβ is expressed in the hypochord, a developmental structure that is immediately dorsal to the dorsal aorta and potentially regulates blood vessel development in the zebrafish. Using a PDGFR tyrosine kinase inhibitor, a morpholino oligonucleotide specific to PDGFRβ, and a dominant negative PDGFRβ transgenic line, we found that PDGFRβ is necessary for angiogenesis of the intersegmental vessels.

Significance/Conclusion

Our data provide the first evidence that PDGFRβ signaling is required for zebrafish angiogenesis. We propose a novel mechanism for zebrafish PDGFRβ signaling that regulates vascular angiogenesis in the absence of mural cells.  相似文献   

12.
Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells.  相似文献   

13.
14.
15.
This study investigated the effect of sesamin on myocardial fibrosis in spontaneously hypertensive rats (SHRs) and the possible mechanisms involved. Twenty-eight male SHRs were randomly allocated to SHR group, Ses160 group (sesamin 160 mg/kg), Ses80 group (sesamin 80 mg/kg) and Cap30 group (captopril 30 mg/kg). Seven male WKY rats were used as control. Sesamin and captopril were administered intragastrically for 12 weeks. Captopril significantly reduced systolic blood pressure and angiotensin II (Ang II) levels in SHRs, accompanied by a marked attenuation of left ventricular hypertrophy (LVH) and collagen deposition (P <0.05 or P <0.01). Though sesamin had no significant influence on Ang II levels, and the hypotensive effect was also significantly inferior to that of captopril (P <0.05 or P <0.01), however, the improvement of LVH and collagen deposition was similar to that in captopril group. Sesamin markedly reduced transforming growth factor-β1 (TGF-β1) content in cardiac tissues, with Smad3 phosphorylation decreased and Smad7 protein expression increased notably (P <0.05 or P <0.01). Protein expression of type I collagen and type III collagen, target genes of Smad3, was down-regulated markedly by sesamin (P <0.05 or P <0.01). In addition, sesamin significantly increased total antioxidant capacity and superoxide dismutase protein in cardiac tissues (P <0.05 or P <0.01), while the expression of NADPH oxidase subunit p47phox and malondialdehyde content were reduced markedly (P <0.05 or P <0.01). In vitro studies also demonstrated that sesamin was able to suppress Ang II induced phosphorylation of Smad3 and secretion of TGF-β1 and type I and type III collagen in cultured rat cardiac fibroblasts. These data suggest that sesamin is capable of attenuating hypertensive myocardial fibrosis through, at least partly, suppression of TGF-β1/Smad signaling pathway.  相似文献   

16.
17.
We previously reported that the skeletal muscle-specific overexpression of Fyn in mice resulted in a severe muscle wasting phenotype despite the activation of mTORC1 signaling. To investigate the bases for the loss of muscle fiber mass, we examined the relationship between Fyn activation of mTORC1, JNK, and endoplasmic reticulum stress. Overexpression of Fyn in skeletal muscle in vivo and in HEK293T cells in culture resulted in the activation of IRE1α and JNK, leading to increased cell death. Fyn synergized with the general endoplasmic reticulum stress inducer thapsigargin, resulting in the activation of IRE1α and further accelerated cell death. Moreover, inhibition of mTORC1 with rapamycin suppressed IRE1α activation and JNK phosphorylation, resulting in protecting cells against Fyn- and thapsigargin-induced cell death. Moreover, rapamycin treatment in vivo reduced the skeletal muscle IRE1α activation in the Fyn-overexpressing transgenic mice. Together, these data demonstrate the presence of a Fyn-induced endoplasmic reticulum stress that occurred, at least in part, through the activation of mTORC1, as well as subsequent activation of the IRE1α-JNK pathway driving cell death.  相似文献   

18.
Acting on the glucocorticoid receptor (NR3C1), glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2×glucocorticoid response element (GRE) reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF) or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h) was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK) inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3 expression by TNF. Finally, formoterol-enhanced 2×GRE reporter activity was also proportional to agonist efficacy and functionally reversed repression by TNF. As similar effects were apparent on glucocorticoid-induced gene expression, the most effective strategy to overcome glucocorticoid resistance in this model was addition of formoterol to high efficacy NR3C1 agonists.  相似文献   

19.
20.
Although androgen receptor (AR) signaling is the main molecular tool regulating growth and function of the prostate gland, estrogen receptor β (ERβ) is involved in the differentiation of prostatic epithelial cells and numerous antiproliferative actions on prostate cancer cells. However, ERβ splice variants have been associated with prostate cancer initiation and progression mechanisms. ERβ is promising as an anticancer therapy and in the prevention of prostate cancer. Herein, we review the recent experimental findings of ERβ signaling in the prostate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号