首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
贵州红枫湖水体叶绿素a的分布与磷循环   总被引:4,自引:0,他引:4  
于2009年8月(夏季)和2010年1月(冬季)在贵州红枫湖采集了分层湖水和分层沉积物样品,分析了湖水样品的总N(TN)、总P(TP)及叶绿素a(Chl-a)含量,结果表明,湖水TN含量在2个季节无明显变化,平均含量为1.58±0.73 mg·L-1,湖水TP含量夏季(0.091±0.070 mg·L-1)高于冬季(0.026±0.055 mg·L-1).夏季湖水在8 m处有季节性分层,下层湖水TN、TP含量高于上层;夏季湖水Chl-a主要集中在上层,上层平均含量为33.2±13.0 mg·m-3,冬季湖水Chl-a平均含量为11.1±3.7 mg·m-3,分析发现,湖水上层(8 m)Chl-a与TP有明显的线性相关关系(r=0.965,P<0.01),表明红枫湖富营养化主要受P元素限制.沉积物孔隙水中的溶解态P(DP)浓度和湖水的磷酸盐(PO3-4-P)浓度比上覆水体高,具有向上扩散的趋势,利用费克第一定律计算了沉积物向上覆水体的释P速率,发现夏季沉积物向上覆水体释P速率高于冬季,可能主要是由于夏季湖水底层的还原环境下沉积物表层的早期成岩作用生成磷酸盐进入孔隙水而促进了沉积物向上覆水体释放P.根据通量释放结果估算了全湖沉积物向水体的释P通量,约为每年5.0±5.6 t.红枫湖富营养化受P控制,沉积物向水体有很大的释放P的潜力,是湖水P的重要内源,严格控制流域的外源输入才能彻底治理该湖的富营养化.  相似文献   

2.
黎静  孙志高  田莉萍  陈冰冰 《生态学报》2019,39(15):5494-5507
基于2016年汛前和汛后获取的黄河尾闾河道与河口区(低盐区)表层和底层水体和悬浮颗粒物样品,研究了水体和悬浮颗粒物中重金属(Cr、Ni、Cu、Zn、Pb、Cd)和As含量的沿程分布特征,并评估了其生态风险。结果表明,汛前尾闾河道表层水体中仅Cd的平均含量高于河口区,而底层水体中As、Cr、Cu、Ni和Pb的平均含量均高于河口区;汛后尾闾河道表层水体中仅Ni的平均含量低于河口区,而底层水体中6种重金属和As的平均含量均高于河口区。汛前尾闾河道表层悬浮颗粒物中As、Cd、Cu、Ni、Pb和Zn的平均含量均低于河口区,而底层悬浮颗粒物中6种重金属和As的平均含量均低于河口区;汛后尾闾河道表层悬浮颗粒物中6种重金属和As的平均含量均高于河口区,而底层悬浮颗粒物中As、Cd、Cr、Cu和Pb的平均含量均高于河口区。汛前和汛后尾闾河道及河口区表层和底层水体中重金属和As污染较轻,其值大多分别低于地表水环境质量Ⅰ类标准和海水水质Ⅰ类标准限值。相对于汛前,汛后尾闾河道及河口区表层或底层悬浮颗粒物中As和6种重金属的毒性单位之和(∑TUs)和平均PEL商数值均降低,说明汛期调水调沙工程的实施可降低汛后悬浮颗粒物中上述元素综合作用所产生潜在生态毒性风险。  相似文献   

3.
春季季风转换期间孟加拉湾的初级生产力   总被引:1,自引:0,他引:1  
2010年中国科学院东北印度洋科学考察期间,对孟加拉湾水域初级生产力展开了研究.孟加拉湾表层水体的水温较高,盐度变化范围较大,且上层水体营养盐含量较低,在真光层底部营养盐浓度突然增加.表层叶绿素a浓度较低(<0.1 mg/m3),叶绿素a最大值常出现在75 m水深处,上层水体浮游植物的生长受氮限制明显.表层潜在初级生产力低于0.2mgcm-3h-1,且初级生产速率在50-75 m出现最大值.水柱中初级生产力变化范围为199-367 mgCm-2d-1,高值出现在88°-89°(E)附近.浮游植物固碳的主要贡献者是微微型浮游生物(<3 μm),其次是小型浮游生物(>20 μm)和微型浮游生物(3-20 μm),但表层与75 m水深处固碳浮游植物的结构有一定差异.将孟加拉湾与阿拉伯海初级生产力进行对比,孟加拉湾水体初级生产力显著低于阿拉伯海,且初级生产力的影响因素有着显著的差异.  相似文献   

4.
夜郎湖水库水体不同形态汞的时空分布   总被引:2,自引:0,他引:2  
于2006年7月(夏季)、2007年1月(冬季)和3月(春季)采集了贵州省夜郎湖水库水样,研究了不同形态汞(总汞、溶解态汞、颗粒态汞)的时空分布特征及其影响因素.结果表明,夏季水体总汞、溶解态汞、颗粒态汞平均含量分别为4.48±2.59、2.37±1.40、2.11±1.86 ng·L-1,均显著高于冬季和春季(P<0.001),而冬春2季不同形态汞含量无明显差异.水质参数悬浮颗粒物(SPM)和硝酸盐(NO-3)与不同形态汞之间均存在显著的正相关关系,表明这些参数对于不同形态汞的季节分布起着重要作用.夏季农业耕作活动相对活跃,表层土壤的扰动增加,雨水冲刷农田土壤,带进大量的外源颗粒物,致使夜郎湖水体夏季总汞水平较高.空间分布表明,夜郎湖水库夏季总汞平均浓度从水库入库河流至大坝方向、出库河流呈现总体下降的分布趋势,但水体各采样剖面没有明显的分布规律.  相似文献   

5.
研究了厦门市石兜-坂头水库中悬浮颗粒物磷形态的分布特征,并分析了各形态磷与水体中叶绿素a的相关性。研究表明,2个库区悬浮颗粒物中的磷主要存在形态为无机磷,占总磷的比例分别为77.9%~87.5%和81.2%~88.1%。从各形态的含量来看,2库区均为Fe/Al-PCa-POP,其中Fe/Al-P浓度分布整体呈现从近岸边至库心处逐渐降低的趋势,Ca-P受空间变化影响最小。石兜-坂头水库悬浮颗粒物中各形态的磷之间均呈极显著相关性,水体中蓝藻、绿藻中叶绿素a的含量与悬浮颗粒物中的Fe/Al-P、Ca-P、IP浓度均呈正相关,与OP浓度则呈负相关。  相似文献   

6.
汉江上游金水河悬浮物及水体碳氮稳定同位素组成特征   总被引:4,自引:0,他引:4  
王婧  袁洁  谭香  李思悦  张全发 《生态学报》2015,35(22):7338-7346
金水河位于南水北调中线工程水源地的汉江上游,研究其污染物来源及分布规律对水源地水资源保护尤为重要。研究了不同水文季节金水河中悬浮颗粒物C和N稳定同位素值、水体硝酸盐与铵盐含量及其N稳定同位素特征。结果表明:金水河流域可溶性氮素与悬浮颗粒物的来源具有明显的空间性和季节性差异,并且流域内叶绿素浓度、水体浊度、悬浮物浓度都会对河流碳氮素稳定同位素值造成影响,主要体现在环境因子的变化制约着水体中硝化和反硝化生物对氮素的可利用性。结果显示:1)水体中悬浮颗粒物的碳稳定同位素为-8.03‰-14.57‰,平均值为2.59‰;氮稳定同位素范围为-7.50‰-7.34‰,平均值为:4.33‰,表明悬浮颗粒物的来源主要为外源性土壤有机质与内源性水生植物残体的混合;2)河流水体中铵盐与硝酸盐N-稳定同位素范围分别为-5.86‰-17.20‰,平均值为5.02‰及-1.48‰-15.86‰,平均值为5.75‰;水体可溶性氮素主要来源为大气沉降、河流水生生物以及地表径流所带入的化肥农药等;3)悬浮颗粒物含量不仅随着河流径流量的季节性变化而变化,还随着人为干扰强度的加强而呈递增的趋势,水体悬浮颗粒物含量最高达到(9.883±3.45)mg/L。而NH_4~+及NO_3~-的浓度也呈现出相同的趋势,含量分别为0.07-0.45 mg/L,平均值为0.25 mg/L;0.08-0.44 mg/L,平均值为0.37 mg/L。稳定同位素测定为河流生态系统提供了一个整合时空氮素来源和转移循环过程的综合指标,揭示了环境因子对河流生态系统氮循环的影响过程与机制。  相似文献   

7.
郭凯  赵文  董双林  姜志强 《生态学报》2016,36(7):1872-1880
为了阐明"海蜇-缢蛏-牙鲆-中国对虾"混养池塘生态系统的结构和功能特征,并为不同养殖模式的碳循环研究和发展低碳渔业提供参考,于2013年5—10月对辽宁丹东东港地区(N 39°51';E 124°09')两个该种混养池塘的悬浮颗粒物结构及其有机碳储量进行了研究。结果表明,两个实验池塘总悬浮颗粒物含量分别为(67.12±6.03)mg/L和(70.05±7.63)mg/L,其中无机悬浮颗粒物占总悬浮颗粒物的72.57%和75.49%;有机悬浮颗粒物占总悬浮颗粒物的27.43%和24.51%。有机悬浮颗粒物中,腐质及细菌占总悬浮颗粒物的27.15%和24.20%;浮游植物干重占0.15%和0.22%;浮游动物干重占0.13%和0.09%。两个实验池塘悬浮颗粒物中的总有机碳(TOC)含量分别为(7.31±1.51)mg/L和(6.42±1.31)mg/L;其中溶解有机碳(DOC)占总有机碳的76.33%和70.56%;颗粒有机碳(POC)占总有机碳的23.67%和29.44%;细菌碳占总有机碳的7.96%和7.18%;腐质碳占总有机碳的14.70%和20.90%;浮游植物碳占总有机碳的0.56%和0.95%;浮游动物碳占总有机碳的0.45%和0.41%。实验池塘中总悬浮颗粒物含量相对较高,其中无机悬浮颗粒物是主要的组成部分;细菌和腐质是有机悬浮颗粒物主要的组成部分,说明腐质链在该种养殖生态系统的物质循环和能量流动中起主要作用。  相似文献   

8.
大型水生植物对重金属的富集与转移   总被引:27,自引:0,他引:27  
潘义宏  王宏镔  谷兆萍  熊国焕  易锋 《生态学报》2010,30(23):6430-6441
通过野外调查和室内分析,研究了云南阳宗海南北两区域自然生长的17种水生植物的生长状况及植物和对应水样、根区底泥中重金属(As、Zn、Cu、Cd、Pb)的含量。结果表明:植物长势良好,未发现受害症状。水体As严重污染,Pb轻度污染,Zn、Cu和Cd均未超标。9种沉水植物同时对As、Zn、Cu、Cd、Pb的富集系数(植物全株重金属含量与水中该元素含量的比值)远大于1,具有共富集特征。在平均含As0.175mg/L的水中,金鱼藻、黑藻、小眼子菜、八药水筛全株As平均含量分别为(150±7.3)、(179±35)、(92±31)、(265±21)mg/kg(干重),对As具有较强富集能力;对于8种湿生和挺水植物,北部采样点的喜旱莲子草、田栖稗、细叶小苦荬和长芒稗对As,长芒稗、细叶小苦荬、圆果雀稗、水蓼和风车草对Cd,海芋和圆果雀稗对Zn的富集系数(植物地上部重金属含量与底泥中该元素含量的比值)以及圆果雀稗对Cd和Zn转移系数(植物地上部重金属含量与根中该元素含量的比值)均大于1。聚类分析结果表明,金鱼藻、黑藻、八药水筛、小眼子菜、穗状狐尾藻5种水生植物同时对As、Zn、Cu、Cd、Pb具有较强的吸收和富集能力,在重金属复合污染水体修复中具有较大潜力。  相似文献   

9.
采用正交实验检测红豆杉(Taxus chinensis(Pilger)Rehd.)细胞悬浮培养中水杨酸、D-果糖、甘露醇和硫酸镧对细胞生长和紫杉醇(taxol)积累的影响。添加10g/LD-果糖,可使细胞的鲜重和干重明显增加;添加60g/L甘露醇使细胞的鲜重和干重明显减少;1mg/L水杨酸仅使细胞鲜重增加,对干重影响不明显;硫酸镧对细胞生长无明显影响。单独添加这4种物质,紫杉醇含量均下降,同时添加  相似文献   

10.
设计了3组微尺度可控实验研究环棱螺的生态功能及其对水体各要素的影响机制,结果表明:受控条件下,环棱螺代谢释放氮、磷,使水体中不同形态氮、磷浓度均明显增加,430 h后溶解性总氮和溶解性总磷分别较初始增加0.73~2.56倍和1.85~3.41倍,且高营养盐浓度条件下,环棱螺的代谢释放受到抑制.环棱螺对水体悬浮颗粒物具有显著的短期促沉效能,且与水体中悬浮颗粒物浓度及成分有关,初始浊度较高的高岭土溶液和藻华水体的沉降速率与螺密度呈正比.短期内环棱螺能显著降低水体叶绿素a浓度,且去除率与螺密度呈正比,但随着时间增加叶绿素a浓度迅速升高.环棱螺对微囊藻的摄食和营养盐释放促进绿藻取代蓝藻成为优势种.  相似文献   

11.
Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700–900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.  相似文献   

12.
Method for Studying Microbial Biofilms in Flowing-Water Systems   总被引:5,自引:4,他引:1       下载免费PDF全文
A method for the study of microbial biofilms in flowing-water systems was developed with special reference to the flow conditions in electrochemical concentration cells. Seawater was circulated in a semiclosed flow system through biofilm reactors (3 cm s−1) with microscope cover slips arranged in lamellar piles parallel with the flow. At fixed time intervals cover slips with their biofilm were removed from the pile, stained with crystal violet, and mounted on microscope slides. The absorbances of the slides were measured at 590 nm and plotted against time to give microbial biofilm development. From calibration experiments a staining time of 1 min and a rinse time of 10 min in a tap water flow (3 cm s−1) were considered sufficient. When an analysis of variance was performed on biofilm development data, 78% of the total variance was found to be due to random natural effects; the rest could be explained by experimental effects. The absorbance values correlated well with protein N, dry weight, and organic weight in two biofilm experiments, one with a biofilm with a high (75%) and one with a low (~25%, normal) inorganic content. Comparisons of regression lines revealed that the absorbance of the stained biofilms was an estimate closely related to biofilm dry weight.  相似文献   

13.
Atomic force microscope techniques and multi-staining fluorescence microscopy were employed to study the steps in drinking water biofilm formation. During the formation of a conditioning layer, surface hydrophobic forces increased and the range of characteristic hydrophobic forces diversified with time, becoming progressively complex in macromolecular composition, which in return triggered irreversible cellular adhesion. AFM visualization of 1 to 8 week drinking water biofilms showed a spatially discontinuous and heterogeneous distribution comprising an extensive network of filamentous fungi in which biofilm aggregates were embedded. The elastic modulus of 40-day-old biofilms ranged from 200 to 9000 kPa, and the biofilm deposits with a height >0.5 μm had an elastic modulus <600 kPa, suggesting that the drinking water biofilms were composed of a soft top layer and a basal layer with significantly higher elastic modulus values falling in the range of fungal elasticity.  相似文献   

14.
Atomic force microscope techniques and multi-staining fluorescence microscopy were employed to study the steps in drinking water biofilm formation. During the formation of a conditioning layer, surface hydrophobic forces increased and the range of characteristic hydrophobic forces diversified with time, becoming progressively complex in macromolecular composition, which in return triggered irreversible cellular adhesion. AFM visualization of 1 to 8 week drinking water biofilms showed a spatially discontinuous and heterogeneous distribution comprising an extensive network of filamentous fungi in which biofilm aggregates were embedded. The elastic modulus of 40-day-old biofilms ranged from 200 to 9000?kPa, and the biofilm deposits with a height >0.5 μm had an elastic modulus <600?kPa, suggesting that the drinking water biofilms were composed of a soft top layer and a basal layer with significantly higher elastic modulus values falling in the range of fungal elasticity.  相似文献   

15.
Microbial biofilms assemble from cells that attach to a surface, where they develop into matrix-enclosed communities. Mechanistic insights into community assembly are crucial to better understand the functioning of natural biofilms, which drive key ecosystem processes in numerous aquatic habitats. We studied the role of the suspended microbial community as the source of the biofilm community in three streams using terminal-restriction fragment length polymorphism and 454 pyrosequencing of the 16S ribosomal RNA (rRNA) and the 16S rRNA gene (as a measure for the active and the bulk community, respectively). Diversity was consistently lower in the biofilm communities than in the suspended stream water communities. We propose that the higher diversity in the suspended communities is supported by continuous inflow from various sources within the catchment. Community composition clearly differed between biofilms and suspended communities, whereas biofilm communities were similar in all three streams. This suggests that biofilm assembly did not simply reflect differences in the source communities, but that certain microbial groups from the source community proliferate in the biofilm. We compared the biofilm communities with random samples of the respective community suspended in the stream water. This analysis confirmed that stochastic dispersal from the source community was unlikely to shape the observed community composition of the biofilms, in support of species sorting as a major biofilm assembly mechanism. Bulk and active populations generated comparable patterns of community composition in the biofilms and the suspended communities, which suggests similar assembly controls on these populations.  相似文献   

16.
Microbial biofilm development was followed under growth conditions similar to those of a projected salinity power plant. Microscope glass cover slips were piled in biofilm reactors to imitate the membrane stacks in such a plant. A staining technique closely correlating absorbance values with biofilm dry weight was used for the study. Generally, the biofilms consisted of solitary and filamentous bacteria which were evenly distributed with considerable amounts of various protozoa and entrapped debris of organic origin. Protozoa predation was shown to decrease the amount of biofilm produced. The biofilm development lag phase was longer at lower temperatures. The subsequent growth phase was approximately arithmetic until stationary phase appeared. Adaptation of a hyperbolic saturation function gave curves that agreed well with the logarithm of the amount of biofilm as a function of time. Increased flow velocity, temperature, and nutrient concentration increased the biofilm production rate. An exponential relationship was shown between biofilm production rate and flow velocity within the range of 0 to 15 cm s−1. Intervals in which the biofilms were exposed to fresh water decreased the biofilm production rate more than four times. If the cover slips were inoculated with untreated seawater for 24 h, subsequent UV treatment had an insignificant effect on the biofilm formation.  相似文献   

17.
Microalgal biofilms are associated with considerable variability in the properties of natural sediments, yet little effort has been made to isolate micro-scale spatial and temporal changes in sediment properties caused by the growth of a biofilm. Understanding the changes associated with biofilm growth and quantifying the time scales over which these changes occur is important for developing suitable experimental designs and for understanding how biofilms mediate sediment properties and processes. The development of a microphytobenthic biofilm and associated changes in the sediment was investigated over 45 days in the laboratory. The biogeochemical properties of the sediment: bulk density, water content, chlorophyll a concentration and colloidal carbohydrate concentration were measured on a sub-millimetre scale in the top 2 mm. The erosion threshold was measured with a Cohesive Strength Meter (CSM). Biofilm development was rapid, with changes in the properties occurring after 1 day and a visible film forming after just 3 days. The largest changes in sediment properties tended to occur in the surface 200 μm through time, with some variables also showing a differing response with depth. There were significant changes in water content, chlorophyll a concentration, colloidal carbohydrate concentration and erosion threshold in the surface 2 mm, with a general trend to increase with time. Bulk density was highly variable and did not show a consistent pattern of change with time. Erosion threshold was positively correlated with water content, chlorophyll a and colloidal carbohydrate in the surface 200 μm and these were also positively correlated with each other. Low Temperature Scanning Electron Microscopy (LTSEM) images revealed changes in the surface sediment structure and the formation of a thick multi-layer biofilm. The rapidity of biofilm growth and development and the associated changes to the sediment should be considered when designing experiments that investigate biofilms and properties of sediments and/or that involve biocide treatments or disturbance to the sediment.  相似文献   

18.
Aims: Quantifying the ex vivo growth of complex multispecies dental biofilms using cross‐polarization 1310‐nm optical coherence tomography (CP‐OCT) system was investigated. Methods and Results: Bacterial microcosms, which were derived from plaque samples of paediatric subjects, were incubated in a biofilm reactor system containing discs of different dental materials for 72 h with daily sucrose pulsing (5×). CP‐OCT analysis of biofilm mass was validated with crystal violet (CV) assays at various growth stages of these complex biofilms. CP‐OCT was able to filter out the back‐reflected signals of water layers in the hydrated biofilm and allowed for direct biofilm quantification. The overall depth‐resolved scattering intensity of the biofilm showed very strong positive correlation with CV assay quantification (Spearman’s ρ = 0·92) during the growth phase of the biofilm. Conclusion: CP‐OCT was able to quantify the mass of the biofilm by measuring the overall depth‐resolved scattering of the biofilm. Significance and Impact of the Study: CP‐OCT has the ability to nondestructively monitor biofilm growth and elucidate the growth characteristics of these microcosms on different dental material compositions.  相似文献   

19.
Planktonic bacteria passing to a sessile state during the formation of a biofilm undergo many gene expression and phenotypic changes. These transformations require a significant time to establish. Inversely, cells extracted from a biofilm should also require a significant time before acquiring the same physiological characteristics as planktonic cells. Relatively few studies have addressed the kinetics of this inverse transformation process. We tested one aspect, namely, the contamination potential of freshly extracted Escherichia coli biofilm cells, precultured in a synthetic medium, in a rich liquid growth medium. We compared the time between inoculation and the beginning of the growth phase of freshly extracted biofilm cells, and suspended exponential and suspended stationary phase cells precultured in the same synthetic medium. Unexpectedly, the lag time for the extracted biofilm cells was the same as the lag time of the suspended exponential phase cells and significantly less than the lag time of the suspended stationary phase cells. The lag times were determined by an impedance technique. Cells extracted from biofilms, i.e., biofilms formed in canalizations and broken up by hydrodynamic forces, are an important source of contamination. Our work shows, in the case of E. coli, the high potential of freshly extracted biofilm cells to reinfect a new medium.  相似文献   

20.
In this article, the conditions for aerobic biofilm formation on suspended particles, the dynamics of biofilm formation, and the biomass production during the start-up of a Biofilm Airlift Suspension reactor (BAS reactor) have been studied. The dynamics of biofilm formation during start up in the biofilm airlift suspension reactor follows three consecutive stages: bare carrier, microcolonies or patchy biofilms on the carrier, and biofilms completely covering the carrier. The effect of hydraulic retention time and of substrate loading rate on the formation of biofilms were investigated. To obtain in a BAS reactor a high biomass concentration and predominantly continuous biofilms, which completely surround the carrier, the hydraulic retention time must be shorter than the inverse of the maximum growth rate of the suspended bacteria. At longer hydraulic retention times, a low amount of attached biomass can be present on the carrier material as patchy biofilms. During the start-up at short hydraulic retention times the bare carrier concentration decreases, the amount of biomass per biofilm particle remains constant, and biomass increase in the reactor is due to increasing numbers of biofilm particles. The substrate surface loading rate has effect only on the amount of biomass on the biofilm particle. A higher surface load leads to a thicker biofilm.A strong nonlinear increase of the concentration of attached biomass in time was observed. This can be explained by a decreased abrasion of the biofilm particles due to the decreasing concentration of bare carriers. The detachment rate per biofilm area during the start-up is independent of the substrate loading rate, but depends strongly upon the bare carrier concentration.The Pirt-maintenance concept is applicable to BAS reactors. Surplus biomass production is diminished at high biomass concentrations. The average maximal yield of biomass on substrate during the experiments presented in this article was 0.44 +/- 0.08 C-mol/C-mol, the maintenance value 0.019 +/- 0.012 C-mol/(C-mol h). The lowest actual biomass yield measured in this study was 0.15 C-mol/C-mol. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号