首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Stem cell-based tissue engineering holds much hope for the development of multifunctional tissues to replace diseased organs. The attachment and survival of stem cells on a three-dimensional (3D) scaffold must be enhanced for faster progression of stem cell based tissue engineering. This study evaluate the stability of mesenchymal stem cells (MSCs) in 3D porous scaffolds composed of a collagen and chitosan blend impregnated with epidermal growth factor incorporated chitosan nanoparticles (EGF-CNP). The EGF-CNP scaffolds were characterized by transmission electron microscopy, which revealed that the nanoparticles were round in shape and 20 ∼ 50 nm in size. The scaffolds were prepared by freeze drying. A Fourier-transform infrared spectrum study revealed that the linkage between collagen and chitosan was through an ionic interaction. Thermal analysis and degradation studies showed that the scaffold could be used in tissue engineering application. MSCs proliferated well in the EGF-CNP impregnated scaffold. A scanning electron microscope study showed anchored and elongated MSCs on the EGF-CNP impregnated scaffold. A 3D biodegradable collagen chitosan scaffold impregnated with EGF-CNP is a promising transportable candidate for MSC-based tissue engineering, and this scaffold could be used as an in vitro model for subsequent clinical applications.  相似文献   

2.
3.
The osteogenic potential of human adipose-derived precursor cells seeded on medical-grade polycaprolactone-tricalcium phosphate scaffolds was investigated in this in vivo study. Three study groups were investigated: (1) induced--stimulated with osteogenic factors only after seeding into scaffold; (2) preinduced--induced for 2 weeks before seeding into scaffolds; and (3) uninduced--cells without any introduced induction. For all groups, scaffolds were implanted subcutaneously into the dorsum of athymic rats. The scaffold/cell constructs were harvested at the end of 6 or 12 weeks and analyzed for osteogenesis. Gross morphological examination using scanning electron microscopy indicated good integration of host tissue with scaffold/cell constructs and extensive tissue infiltration into the scaffold interior. Alizarin Red histology and immunostaining showed a heightened level of mineralization and an increase in osteonectin, osteopontin, and collagen type I protein expression in both the induced and preinduced groups compared with the uninduced groups. However, no significant differences were observed in these indicators when compared between the induced and preinduced groups.  相似文献   

4.
Tissue engineering has recently evolved into a promising approach for annulus fibrosus (AF) regeneration. However, selection of an ideal cell source, which can be readily differentiated into AF cells of various regions, remains challenging because of the heterogeneity of AF tissue. In this study, we set out to explore the feasibility of using transforming growth factor‐β3‐mediated bone marrow stem cells (tBMSCs) for AF tissue engineering. Since the differentiation of stem cells significantly relies on the stiffness of substrate, we fabricated nanofibrous scaffolds from a series of biodegradable poly(ether carbonate urethane)‐urea (PECUU) materials whose elastic modulus approximated that of native AF tissue. We cultured tBMSCs on PECUU scaffolds and compared their gene expression profile to AF‐derived stem cells (AFSCs), the newly identified AF tissue‐specific stem cells. As predicted, the expression of collagen‐I in both tBMSCs and AFSCs increased with scaffold stiffness, whereas the expression of collagen‐II and aggrecan genes showed an opposite trend. Interestingly, the expression of collagen‐I, collagen‐II and aggrecan genes in tBMSCs on PECUU scaffolds were consistently higher than those in AFSCs regardless of scaffold stiffness. In addition, the cell traction forces (CTFs) of both tBMSCs and AFSCs gradually decreased with scaffold stiffness, which is similar to the CTF change of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that tBMSCs had strong tendency to differentiate into various types of AF cells and presented gene expression profiles similar to AFSCs, thereby establishing a rationale for the use of tBMSCs in AF tissue engineering.  相似文献   

5.
Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo.  相似文献   

6.
Periodontal ligament (PDL) is a specialized connective tissue that influences the lifespan of the tooth. Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine, but little is known about the effects of TGF-β1 on PDL cells. Our aim has been to demonstrate the expression of TGF-β1 in rat PDL tissues and to evaluate its effects on the proliferation and gene expression in human PDL cells (HPLCs) and a human PDL stem/progenitor cell line, line 1-11, that we have recently developed. The expression of TGF-β1 in the entire PDL tissue was confirmed immunohistochemically, and both HPLCs and cell line 1-11 expressed mRNA from the TGF-β1, TGF-β type I receptor, and TGF-β type II receptor genes. Although exogenous TGF-β1 stimulated the proliferation of HPLCs, it did not upregulate the expression of alpha-smooth muscle actin (α-SMA), type I collagen (Col I), or fibrillin-1 (FBN1) mRNA or of α-SMA protein in HPLCs, whereas expression for these genes was attenuated by an anti-TGF-β1 neutralizing antibody. In contrast, exogenous TGF-β1 reduced the proliferation of cell line 1-11, although it upregulated the expression of α-SMA, Col I, and FBN1 mRNA and of α-SMA protein in this cell line. In addition, interleukin-1 beta stimulation significantly reduced the expression of TGF-β1 mRNA and protein in HPLCs. Thus, TGF-β1 seems to play an important role in inducing fibroblastic differentiation of PDL stem/progenitor cells and in maintaining the PDL apparatus under physiological conditions.  相似文献   

7.
Biodegradable collagen scaffolds are used clinically for oral soft tissue augmentation to support wound healing. This study sought to provide a novel ex vivo model for analyzing healing kinetics and gene expression of primary human gingival fibroblasts (hGF) within collagen scaffolds. Sponge type and gel type scaffolds with and without platelet-derived growth factor-BB (PDGF) were assessed in an hGF containing matrix. Morphology was evaluated with scanning electron microscopy, and hGF metabolic activity using MTT. We quantitated the population kinetics within the scaffolds based on cell density and distance from the scaffold border of DiI-labled hGFs over a two-week observation period. Gene expression was evaluated with gene array and qPCR. The sponge type scaffolds showed a porous morphology. Absolute cell number and distance was higher in sponge type scaffolds when compared to gel type scaffolds, in particular during the first week of observation. PDGF incorporated scaffolds increased cell numbers, distance, and formazan formation in the MTT assay. Gene expression dynamics revealed the induction of key genes associated with the generation of oral tissue. DKK1, CYR61, CTGF, TGFBR1 levels were increased and integrin ITGA2 levels were decreased in the sponge type scaffolds compared to the gel type scaffold. The results suggest that this novel model of oral wound healing provides insights into population kinetics and gene expression dynamics of biodegradable scaffolds.  相似文献   

8.
In situ vascular tissue engineering (TE) aims at regenerating vessels using implanted synthetic scaffolds. An envisioned strategy is to capture and differentiate progenitor cells from the bloodstream into the porous scaffold to initiate tissue formation. Among these cells are the endothelial colonies forming cells (ECFCs) that can differentiate into endothelial cells and transdifferentiate into smooth muscle cells under biochemical stimulation. The influence of mechanical stimulation is unknown, but relevant for in situ vascular TE because the cells perceive a change in mechanical environment when captured inside the scaffold, where they are shielded from blood flow induced shear stresses. Here we investigate the effects of substrate stiffness as one of the environmental mechanical cues to control ECFC fate within scaffolds. ECFCs were seeded on soft (3.58±0.90 kPa), intermediate (21.59±2.91 kPa), and stiff (93.75±18.36 kPa) fibronectin-coated polyacrylamide gels, as well as on glass controls, and compared to peripheral blood mononuclear cells (PBMC). Cell behavior was analyzed in terms of adhesion (vinculin staining), proliferation (BrdU), phenotype (CD31, αSMA staining, and flow cytometry), and collagen production (col I, III, and IV). While ECFCs adhesion and proliferation increased with substrate stiffness, no change in phenotype was observed. The cells produced no collagen type I, but abundant amounts of collagen type III and IV, albeit in a stiffness-dependent organization. PBMCs did not adhere to the gels, but they did adhere to glass, where they expressed CD31 and collagen type III. Addition mechanical cues, such as cyclic strains, should be studied to further investigate the effect of the mechanical environment on captured circulating cells for in situ TE purposes.  相似文献   

9.
Culturing cells on three-dimensional, biodegradable scaffolds may create tissues suitable either for reconstructive surgery applications or as novel in vitro model systems. In this study, we have tested the hypothesis that the phenotype of smooth muscle cells (SMCs) in three-dimensional, engineered tissues is regulated by the chemistry of the scaffold material. Specifically, we have directly compared cell growth and patterns of extracellular matrix (ECM) (e.g. , elastin and collagen) gene expression on two types of synthetic polymer scaffolds and type I collagen scaffolds. The growth rates of SMCs on the synthetic polymer scaffolds were significantly higher than on type I collagen sponges. The rate of elastin production by SMCs on polyglycolic acid (PGA) scaffolds was 3.5 +/- 1.1-fold higher than that on type I collagen sponges on Day 11 of culture. In contrast, the collagen production rate on type I collagen sponges was 3.3 +/- 1.1-fold higher than that on PGA scaffolds. This scaffold-dependent switching between elastin and collagen gene expression was confirmed by Northern blot analysis. The finding that the scaffold chemistry regulates the phenotype of SMCs independent of the scaffold physical form was confirmed by culturing SMCs on two-dimensional films of the scaffold materials. It is likely that cells adhere to these scaffolds via different ligands, as the major protein adsorbed from the serum onto synthetic polymers was vitronectin, whereas fibronectin and vitronectin were present at high density on type I collagen sponges. In summary, this study demonstrates that three-dimensional smooth muscle-like tissues can be created by culturing SMCs on three-dimensional scaffolds, and that the phenotype of the SMCs is strongly regulated by the scaffold chemistry. These engineered tissues provide novel, three-dimensional models to study cellular interaction with ECM in vitro.  相似文献   

10.
Mechanical properties of scaffolds seeded with mesenchymal stem cells used for cartilage repair seem to be one of the critical factors in possible joint resurfacing. In this paper, the effect of adding hyaluronic acid, hydroxyapatite nanoparticles or chitosan nanofibers into the cross-linked collagen I on the mechanical response of the lyophilized porous scaffold has been investigated in the dry state at 37 oC under tensile loading. Statistical significance of the results was evaluated using ANOVA analysis. The results showed that the addition of hyaluronic acid significantly (p<0.05) reduced the tensile elastic modulus and enhanced the strength and deformation to failure of the modified cross-linked collagen I under the used test conditions. On the other hand, addition of hydroxyapatite nanoparticles and chitosan nanofibers, respectively, increased the elastic modulus of the modified collagen ten-fold and four-fold, respectively. Hydroxyapatite caused significant reduction in the ultimate deformation at break while chitosan nanofibers enhanced the ultimate deformation under tensile loading substantially (p<0.05). The ultimate tensile deformation was significantly (p<0.05) increased by addition of the chitosan nanofibers. The enhanced elastic modulus of the scaffold was translated into enhanced resistance of the porous scaffolds against mechanical load compared to scaffolds based on cross-linked neat collagen or collagen with hyaluronic acid with similar porosity. It can be concluded that enhancing the rigidity of the compact scaffold material by adding rigid chitosan nanofibers can improve the resistance of the porous scaffolds against compressive loading, which can provide more structural protection to the seeded mesenchymal stem cells when the construct is implanted into a lesion. Moreover, scaffolds with chitosan nanofibers seemed to enhance cell growth compared to the neat collagen I when tested in vitro as well as the scaffold stability, extending its resorption to more than 10 weeks.  相似文献   

11.
Two novel scaffold models made of chitosan fibers were designed, fabricated, and investigated. Raw chitosan fibers were either tightened between plastic rings or were processed into stand-alone scaffolds. Chitosan fiber scaffolds were further modified by coating with a thin layer of fibrillar collagen type I to biologize the surface. Cell culture experiments were carried out using murine osteoblast-like cells (7F2). Confocal laser scanning microscopy (cLSM) as well as scanning electron microscopy (SEM) revealed fast attachment and morphological adaptation of the cells on both the raw chitosan fibers and the collagen-coated scaffolds. Cells were cultivated for up to 4 weeks on the materials and proliferation as well as osteogenic differentiation was quantitatively analyzed in terms of lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) activity. We found a 14-16-fold increase of cell number and the typical pattern of ALP activity, whereas the collagen coating does not remarkably influence these parameters. The maintenance of osteogenic phenotype on the novel materials was furthermore confirmed by immunostaining of osteocalcin and study of matrix mineralization. The feature of the collagen-coated but also the raw chitosan fiber scaffolds to support the attachment, proliferation, and differentiation of osteoblast-like cells suggest a potential application of chitosan fibers and textile chitosan scaffolds for the tissue engineering of bone.  相似文献   

12.
Ifkovits JL  Wu K  Mauck RL  Burdick JA 《PloS one》2010,5(12):e15717
Fibrous scaffolds are finding wide use in the field of tissue engineering, as they can be designed to mimic many native tissue properties and structures (e.g., cardiac tissue, meniscus). The influence of fiber alignment and scaffold architecture on cellular interactions and matrix organization was the focus of this study. Three scaffolds were fabricated from the photocrosslinkable elastomer poly(glycerol sebacate) (PGS), with changes in fiber alignment (non-aligned (NA) versus aligned (AL)) and the introduction of a PEO sacrificial polymer population to the AL scaffold (composite (CO)). PEO removal led to an increase in scaffold porosity and maintenance of scaffold anisotropy, as evident through visualization, mechanical testing, and mass loss studies. Hydrated scaffolds possessed moduli that ranged between ~3-240 kPa, failing within the range of properties (<300 kPa) appropriate for soft tissue engineering. CO scaffolds were completely degraded as early as 16 days, whereas NA and AL scaffolds had ~90% mass loss after 21 days when monitored in vitro. Neonatal cardiomyocytes, used as a representative cell type, that were seeded onto the scaffolds maintained their viability and aligned along the surface of the AL and CO fibers. When implanted subcutaneously in rats, a model that is commonly used to investigate in vivo tissue responses to biomaterials, CO scaffolds were completely integrated at 2 weeks, whereas ~13% and ~16% of the NA and AL scaffolds, respectively remained acellular. However, all scaffolds were completely populated with cells at 4 weeks post-implantation. Polarized light microscopy was used to evaluate the collagen elaboration and orientation within the scaffold. An increase in the amount of collagen was observed for CO scaffolds and enhanced alignment of the nascent collagen was observed for AL and CO scaffolds compared to NA scaffolds. Thus, these results indicate that the scaffold architecture and porosity are important considerations in controlling tissue formation.  相似文献   

13.
We here report the development of two peptide scaffolds designed for periodontal ligament fibroblasts. The scaffolds consist of one of the pure self-assembling peptide scaffolds RADA16 through direct coupling to short biologically active motifs. The motifs are 2-unit RGD binding sequence PRG (PRGDSGYRGDS) and laminin cell adhesion motif PDS (PDSGR). RGD and laminin have been previously shown to promote specific biological activities including periodontal ligament fibroblasts adhesion, proliferation and protein production. Compared to the pure RADA16 peptide scaffold, we here show that these designer peptide scaffolds significantly promote human periodontal ligament fibroblasts to proliferate and migrate into the scaffolds (for ∼300 µm/two weeks). Moreover these peptide scaffolds significantly stimulated periodontal ligament fibroblasts to produce extracellular matrix proteins without using extra additional growth factors. Immunofluorescent images clearly demonstrated that the peptide scaffolds were almost completely covered with type I and type III collagens which were main protein components of periodontal ligament. Our results suggest that these designer self-assembling peptide nanofiber scaffolds may be useful for promoting wound healing and especially periodontal ligament tissue regeneration.  相似文献   

14.
The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC‐CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC‐CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC‐CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro‐angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC‐CM versus serum control, the ratio between collagen III and I mRNAs increased by 2‐fold. Furthermore, the gene expression for α‐smooth muscle actin, tissue inhibitor of metalloproteinase‐1 and 2 and matrix metalloproteinase‐14 was significantly increased by approximately 2‐fold. In conclusion, factors existing in MSC‐CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro‐healing phenotype in fibroblasts.  相似文献   

15.
Bone marrow is a useful cell source for skeletal tissue engineering approaches. In vitro differentiation of marrow mesenchymal stem cells (MSCs) to chondrocytes or osteoblasts can be induced by the addition of specific growth factors to the medium. The present study evaluated the behaviour of human MSCs cultured on various scaffolds to determine whether their differentiation can be induced by cell-matrix interactions. MSCs from bone marrow collected from the acetabulum during hip arthroplasty procedures were isolated by cell sorting, expanded and characterised by a flow cytometry system. Cells were grown on three different scaffolds (type I collagen, type I + II collagen and type I collagen + hydroxyapatite membranes) and analysed by histochemistry, immunohistochemistry and spectrophotometry (cell proliferation, alkaline phosphatase activity) at 15 and 30 days. Widely variable cell adhesion and proliferation was observed on the three scaffolds. MSCs grown on type I+II collagen differentiated to cells expressing chondrocyte markers, while those grown on type I collagen + hydroxyapatite differentiated into osteoblast-like cells. The study highlighted that human MSCs grown on different scaffold matrices may display different behaviours in terms of cell proliferation and phenotype expression without growth factor supplementation.  相似文献   

16.
Bone tissue engineering requires an osteoconductive scaffold, multipotent cells with regenerative capacity and bioactive molecules. In this study we investigated the osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) on titanium dioxide (TiO2) scaffold coated with alginate hydrogel containing various concentrations of simvastatin (SIM). The mRNA expression of osteoblast-related genes such as collagen type I alpha 1 (COL1A1), alkaline phosphatase (ALPL), osteopontin (SPP1), osteocalcin (BGLAP) and vascular endothelial growth factor A (VEGFA) was enhanced in hAD-MSCs cultured on scaffolds with SIM in comparison to scaffolds without SIM. Furthermore, the secretion of osteoprotegerin (OPG), vascular endothelial growth factor A (VEGFA), osteopontin (OPN) and osteocalcin (OC) to the cell culture medium was higher from hAD-MSCs cultured on scaffolds with SIM compared to scaffolds without SIM. The TiO2 scaffold coated with alginate hydrogel containing SIM promote osteogenic differentiation of hAD-MSCs in vitro, and demonstrate feasibility as scaffold for hAD-MSC based bone tissue engineering.  相似文献   

17.
Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well-known insulin-mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage-specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone-specific genes. This study demonstrates the feasibility of ZnO-containing composites as a potential scaffold for osteochondral tissue engineering.  相似文献   

18.
Scaffold‐based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano‐/microfibrous scaffold, made from a mixture of chitosan–ß‐glycerol phosphate–gelatin (chitosan–GP–gelatin) using a standard electrospinning set‐up was developed. Gelatin–acid acetic and chitosan ß‐glycerol phosphate–HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin‐only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non‐toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell‐based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan–GP–gelatin fibrous scaffolds for engineering three‐dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 163–175, 2016.  相似文献   

19.
Insoluble collagen was prepared from bovine periodontal ligament. Isolation and characterization of CNBr peptides originating from the alpha1(I), alpha2, and alpha1(III) chains showed that the tissue contained both type I and type III collagens. Further evidence for the presence of type III collagen was obtained by the isolation of alpha1(III) chains from pepsin-treated ligament collagen, with properties similar to those of human alpha1(III) chains. Estimates based on the amounts of certain CNBr peptides indicated that about one-fifth of the collagen of periodontal ligament is type III, the remainder being type I collagen.  相似文献   

20.
目的:研究Ⅰ型胶原(ColⅠ)/聚己内酯(PCL)/凹凸棒石(ATP)复合支架材料的生物相容性及体外骨诱导性。方法:采用溶液浇铸-粒子滤沥法制备三种不同ATP含量(0% wt、10% wt、30% wt)的ColⅠ/PCL/ATP复合支架材料;将D1细胞与三种支架材料共培养,扫描电镜、鬼笔环肽和H&E染色、CCK-8法评价支架材料的生物相容性;D1细胞复合三种支架材料培养7天、14天、21天后RT-qPCR检测其成骨相关基因(Runx-2、Osterix、ALP、Col I、OPN、OC)的相对表达量,分别评价比较三种支架材料的成骨诱导效应。结果:SEM、鬼笔环肽和H&E染色显示D1细胞在三种支架材料表面均呈现良好的黏附;CCK-8结果显示,细胞在ATP含量30% wt的支架材料上增殖率显著高于其他两组,RT-qPCR检测结果显示,与0% wt、10% wt ATP相比,30% wt ATP组的Runx-2相对表达量在7天时显著升高, 14天、21天降低;ALP相对表达量在14天时显著升高,21天时显著降低;Osterix、Col I、OPN、OC的相对表达量随时间和ATP剂量的增加显著上调(P<0.05)。结论:ColⅠ/PCL/ATP复合支架材料具有良好的生物相容性及骨诱导性,有望成为一种理想的骨组织工程支架材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号