共查询到20条相似文献,搜索用时 0 毫秒
1.
The assay for transaminase B (EC 2.6.1.6) activity, developed by D. E. Duggan and J. A. Wechsler (1973, Anal. Biochem.51, 67–79) has been modified to allow for the measurement of activity in Escherichia coli cells made permeable by cetyltrimethylammonium bromide (CETAB). A concentration of 10 mg% CETAB was found to be most effective in treating the cells without having a significant effect on transaminase B activity. Extraction of the dinitrophenylhydrazone of 2-oxoisovalerate by toluene was not affected by the CETAB treatment. We further report that the Na2CO3 extraction step is not required to measure color formed by the dinitrophenylhydrazone of 2-oxoisovalerate. This CETAB-treated cell assay is accurate to study transaminase B activity through most of the logarithmic phase of growth of Escherichia coli. 相似文献
2.
Joseph O. Falkinham III 《Molecular & general genetics : MGG》1979,176(1):147-149
Summary A mutation affecting alanine--ketoisovalerate transaminase activity has been shown to be cotransducibe with the ilv gene cluster. The transaminase deficiency results in conditional isoleucine auxotrophy in the presence of alanine. 相似文献
3.
4.
Escherichia coli K-12 mutant with alternate requirements for vitamin B6 or branched-chain amino acids and lacking transaminase C activity.
下载免费PDF全文

An Escherichia coli K-12 auxotrophic derivative that grows if supplemented with pyridoxine, isoleucine, leucine, or alanine is described. 相似文献
5.
The biodegradative lysine decarboxylase of E. coli has been reported to attain a higher specific activity when grown to saturation in the presence of excess lysine under conditions of low pH and absence of aeration. In order to examine possible sources of the pH and anaerobic regulation, a series of isogenic strains of E. coli K-12 were constructed. The effects of cadR-, fnr -, cya -, crp -and pgl -mutations on lysine decarboxylase expression were examined. Cultures were grown in a lysine supplemented rich medium at pH 5.5, pH 6.8, and pH 8.0 with and without aeration and the enzyme was assayed from log phase cultures. The results suggested that the pH and air responses were independent and that these known regulatory processes are not responsible for this regulation of the biodegradative lysine decarboxylase. 相似文献
6.
Several F' plasmids encoding resistance to tetracycline have been derived from a trg::Tn10 Hfr B7 strain of Escherichia coli K-12. One of these plasmids, JGF312, was analyzed by restriction endonuclease digestion and Southern blot hybridization to cloned chromosomal fragments. This analysis revealed that JGF312 was formed by Tn10-promoted deletion from the Tn10 insertion (31.4 min) to within the prophage rac at 30.1 min. Hfr B7 was shown to result from recombination between IS2 of F delta (33-43) and a chromosomal IS2 located within the rac-man region at 30.9 min on the genetic map. 相似文献
7.
Molecular cloning of the L-phenylalanine transaminase gene from Paracoccus denitrificans in Escherichia coli K-12 总被引:1,自引:0,他引:1
T Takagi T Taniguchi Y Yamamoto T Shibatani 《Biotechnology and applied biochemistry》1991,13(1):112-119
The L-phenylalanine transaminase gene of Paracoccus denitrificans was cloned by a shotgun method using the Escherichia coli K-12 mutant DG30, which lacks three distinct transaminase genes. Plasmid pPAP142 was constructed by inserting a 2.2-kb fragment carrying the transaminase gene into pUC18. Strain E. coli K-12 HB101 cells harboring the plasmid produced 20-fold to 30-fold more transaminase than wild type P. denitrificans cells. The nucleotide sequence of the 2.2-kb fragment was determined, revealing that the deduced amino acid sequence of the transaminase of P. denitrificans is similar to that of other transaminases. 相似文献
8.
M. G. Marinus 《Molecular & general genetics : MGG》1985,200(1):185-186
Summary Methylation of adenine in the GATC-sequence of the-35 region of the trpR promoter decreases activity by 2–3 fold. 相似文献
9.
We demonstrate here that Escherichia coli K-12 synthesizes two different L-serine deaminases (L-SD) catalyzing the nonoxidative deamination of L-serine to pyruvate, one coded for by the previously described sdaA gene and a second, hitherto undescribed enzyme which we call L-SD2. A strain carrying a null mutation in sdaA made no detectable L-SD in minimal medium, but had activity in Luria broth. We describe a mutation, sdaX, which affects the regulation of L-SD2 and permits its expression in minimal medium, and an insertion mutation, sdaB, which abolishes L-SD2 activity completely. Both mutations lie near 60.5 min on the E. coli genetic map. The two L-SD enzymes have similar enzyme parameters, and both require posttranslational activation. 相似文献
10.
UGA-specific nonsense suppressors from Escherichia coli K-12 were isolated and characterized. One of them (Su+UGA-11) was identified as a mutant of the prfB gene for the peptide releasing factor RF2. It appears that in this strain, while peptide release at sites of UGA mutations is retarded, the UGA stop codon is read through even in the absence of a tRNA suppressor, exhibiting a novel type of passive nonsense suppression. Three suppressors (Su+UGA-12, -16 and -34) were capable of restoring the streptomycin sensitive phenotype in resistant bacteria (strAr). Because of their drug-related phenotype, these are possibly mutations in the components of the ribosomal machinery, particularly those concerned with peptide release at UGA nonsense codons. A tRNA suppressor was also obtained which was derived from the tRNA(Trp) gene. In this strain, a long region between rrnC (84.5 min) and rrnB (89.5 min) was duplicated and one of the duplicated genes of tRNA(Trp) was mutated to the suppressor. The mechanism of UGA-suppression is discussed in terms of translation termination at the nonsense codon in both active and passive fashions. 相似文献
11.
12.
Iron transport in Escherichia coli K-12 总被引:14,自引:0,他引:14
The study of iron uptake promoted by 2,3-dihydroxybenzoate (DHB) into Escherichia coli K-12 aroB mutants allowed some dissection of outer and cytoplasmic membrane functions. These strains are unable to produce the iron-transporting chelate enterochelin, unless fed with a precursor such as DHB. When added to the medium, enterochelin and its natural breakdown products, the linear dimer and trimer of 2,3-dihydroxybenzoylserine (DBS), efficiently transported iron via the feuB, tonB and fep gene products. Thus mutants in these genes were defective in transport of the above chelates. However, feuB and tonB mutants were able to take up iron when DHB was added to the medium. Thus DHB-promoted iron uptake bypassed two functions required for the transport of ferric-enterochelin from the medium. One of these functions, feuB, has been shown to be an outer membrane protein. In contrast to three other iron transport systems including ferric-enterochelin uptake, DHB-promoted iron uptake was little affected by the uncoupler 2,4-dinitrophenol. Dissipation of the energized state of the cytoplasmic membrane apparently only affects those iron transport systems which require an outer membrane protein. Since DHB-promoted iron uptake bypasses the feuB outer membrane protein and the tonB function, it is concluded that, in ferricenterochelin transport, the tonB gene may function in coupling the energized state of the cytoplasmic membrane to the protein-dependent outer membrane permeability. DHB-promoted iron uptake required the synthesis and enzymatic breakdown of enterochelin as judged by the effects of the entF and fesB mutations. A fep mutant was not only deficient in the transport of the ferric chelates of enterochelin and its breakdown products, but was also deficient in DHB-promoted iron uptake. A scheme is presented in which iron diffuses as DHB-complex through the outer membrane, and is subsequently captured by enterochelin or DBS dimer or trimer and translocated across the cytoplasmic membrane.List of Abbreviations DHB
2,3-dihydroxybenzoate
- DBS
2,3-dihydroxybenzoylserine
- NTA
nitrilotriacetate
- DNP
2,4-dinitrophenol 相似文献
13.
14.
《Bioscience, biotechnology, and biochemistry》2013,77(7):1549-1558
Aminopeptidase B, which is one of the four cysteinyl-glycinases of Escherichia coli K-12, was purified to electrophoretic homogeneity and its enzymatic characteristics were observed. Aminopeptidase B was activated by various divalent cations such as Ni2+, Mn2+, Co2+, and Cd2+, and lost its activity completely on dialysis against EDTA. This indicates that aminopeptidase B is a metallopeptidase. It was stabilized against heat in the presence of Mn2+ or Co2+. The activity of aminopeptidase B, which was saturated with one of above divalent cations, was enhanced on the addition of a very small amount of a second divalent cation. α-Glutamyl p-nitroanilide, leucine p-nitroanilide, and methionine p-nitroanilide were good substrates for aminopeptidase B, while native peptides, cysteinylglycine and leucylglycine, were far better substrates. The kcat/Km for cysteinylglycine was much bigger than those for leucylglycine or leucine p-nitroanilide. 相似文献
15.
Aminopeptidase B, which is one of the four cysteinylglycinases of Escherichia coli K-12, was purified to electrophoretic homogeneity and its enzymatic characteristics were observed. Aminopeptidase B was activated by various divalent cations such as Ni2+, Mn2+, Co2+, and Cd2+, and lost its activity completely on dialysis against EDTA. This indicates that aminopeptidsase B is a metallopeptidase. It was stabilized against heat in the presence of Mn2+ or Co2+. The activity of aminopeptidase B, which was saturated with one of above divalent cations, was enhanced on the addition of a very small amount of a second divalent cation. Alpha-glutamyl p-nitroanilide, leucine p-nitroanilide, and methionine p-nitroanilide were good substrates for aminopeptidase B, while native peptides, cysteinylglycine and leucylglycine, were far better substrates. The kcat/Km for cysteinylglycine was much bigger than those for leucylglycine or leucine p-nitroanilide. 相似文献
16.
17.
Escherichia coli mutants defective at putP and putA lack proline transport via proline porter I and proline dehydrogenase activity, respectively. They retain a proline uptake system (proline porter II) that is induced during tryptophan-limited growth and are sensitive to the toxic L-proline analog, 3,4-dehydroproline. 3,4-Dehydroproline-resistant mutants derived from a putP putA mutant lack proline porter II. Auxotrophic derivatives derived from putP+ or putP bacteria can grow if provided with proline at low concentration (25 microM); those derived from the 3,4-dehydroproline-resistant mutants require high proline for growth (2.5 mM). We conclude that E. coli, like Salmonella typhimurium, possesses a second proline porter that is inactivated by mutations at the proP locus. 相似文献
18.
While attempting to isolate d-serine-sensitive mutants of Escherichia coli K-12, we found a class of mutants sensitive to low concentrations of l-serine (10 to 25 mug/ml). 相似文献
19.
Mutants devoid of malate dehydrogenase activity have been isolated in Escherichia coli K-12. They do not possess detectable malate dehydrogenase when grown aerobically or anaerobically on glucose as sole carbon source. All mutants revert spontaneously; a few partial revertants have been found with a malate dehydrogenase exhibiting altered electrophoretic mobility. Therefore, only one such enzyme appears to exist in the strains examined. No evidence could be obtained for the presence of a malate dehydrogenase not linked to nicotinamide adenine dinucleotide. Mutants deficient in both malate dehydrogenase and phosphoenol pyruvate carboxylase activities will grow anaerobically on minimal glucose plus succinate medium; also, malate dehydrogenase mutants do not require succinate for anaerobic growth on glucose. The anaerobic pathway oxaloacetate to succinate or succinate to aspartate appears to be accomplished by aspartase. Malate dehydrogenase is coded for by a locus somewhere relatively near the histidine operon, i.e., a different chromosomal location than that known for other citric acid cycle enzymes. 相似文献
20.
Peptidases in spheroplasts of Escherichia coli K-12 总被引:1,自引:0,他引:1