首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of 6 heterocyclic amines, Trp-P-1 (25 mg/kg), Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg) and PhIP (40 mg/kg), in mouse liver, lung, kidney, brain, spleen, bone marrow and stomach mucosa. Mice were sacrificed 1, 3, and 24 h after intraperitoneal injection. Trp-P-2, IQ, MeIQ, and MeIQx yielded statistically significant DNA damage in the stomach, liver, kidney, lung and brain; Trp-P-1 in the stomach, liver and lung; and PhIP in the liver, kidney and brain. None of the heterocyclic amines induced DNA damage in the spleen and bone marrow. Our results suggest that the alkaline SCG assay applied to multiple organs is a good way to detect organ-specific genotoxicity of heterocyclic amines in mammals.  相似文献   

2.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

3.
The genotoxicity of 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers selected from IARC (International Agency for Research on Cancer) groups 1, 2A, and 2B was evaluated in eight mouse organs with the alkaline single cell gel electrophoresis (SCGE) (comet) assay. Groups of four mice were treated once intraperitoneally at the dose at which micronucleus tests had been conducted, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and/or 24 h later. All chemicals were positive in the SCGE assay in at least one organ. Of the 22 mono-functional alkylating agents, over 50% were positive in all organs except the brain and bone marrow. The two subsets of mono-functional alkylating agents differed in their bone marrow genotoxicity: only 1 of the 9 dialkyl N-nitrosoamines was positive in bone marrow as opposed to 8 of the 13 other alkylating agents, reflecting the fact that dialkyl N-nitrosoamines are poor micronucleus inducers in hematopoietic cells. The two groups of mono-functional alkylating agents also differ in hepatic carcinogenicity in spite of the fact that they are similar in hepatic genotoxicity. While dialkyl N-nitrosoamines produce tumors primarily in mouse liver, only one (styrene-7,8-oxide) out of 10 of the other type of mono-functional alkylating agents is a mouse hepatic carcinogen. Taking into consideration our previous results showing high concordance between hepatic genotoxicity and carcinogenicity for aromatic amines and azo compounds, a possible explanation for the discrepancy might be that chemicals that require metabolic activation show high concordance between genotoxicity and carcinogenicity in the liver. A high percent of the 10 DNA crosslinkers were positive in the SCGE assay in the gastrointestinal mucosa, but less than 50% were positive in the liver and lung. In this study, we allowed 10 min alkali-unwinding to obtain low and stable control values. Considering that DNA crosslinking lesions can be detected as lowering of not only positive but also negative control values, low control values by short alkali-treatment might make it difficult to detect DNA crosslinking lesions. In conclusion, although both mono-functional alkylating agents and DNA crosslinkers are genotoxic in mouse multiple organs, the genotoxicity of DNA crosslinkers can be detected in the gastrointestinal organs even though they were given intraperitoneally followed by the short alkali-treatment.  相似文献   

4.
Different doses of sodium nitrite were studied for their action in acute and chronic experiments on rats. Nitrite (NaNO2) hypoxia in rats was simulated to show how the methemoglobin (MtHb) level in blood depends on NaNO2 doses and the method of introduction. Lethal and sublethal doses of NaNO2 (50% of MtHb and more) promoted a decrease of lipid peroxidation (LP) in the liver microsomes, while the average and easy level of hypoxia activated it. Introduction of NaNO2 has led to dose-dependent activation of superoxide dismutase (SOD) in the liver, blood and heart tissues as well as to disturbances in the DNA structure. An average level (40 mg NaNO2 per kg of rat weight daily during one month) of chronic nitrite hypoxia has led to the same changes of metabolism as acute one. Vitamin E normalized LP, but not the MtHb level.  相似文献   

5.
Diphenyl diselenide (DPDS) is an organoselenium compound with interesting pharmacological activities and various toxic effects. In previous reports, we demonstrated the pro-oxidant action and the mutagenic properties of this molecule in bacteria, yeast and cultured mammalian cells. This study investigated the genotoxic effects of DPDS in multiple organs (brain, kidney, liver, spleen, testes and urinary bladder) and tissues (bone marrow, lymphocytes) of mice using in vivo comet assay, in order to determine the threshold of dose at which it has beneficial or toxic effects. We assessed the mechanism underlying the genotoxicity through the measurement of GSH content and thiobarbituric acid reactive species, two oxidative stress biomarkers. Male CF-1 mice were given 0.2-200 micromol/kg BW DPDS intraperitonially. DPDS induced DNA damage in brain, liver, kidney and testes in a dose response manner, in a broad dose range at 75-200 micromol/kg with the brain showing the highest level of damage. Overall, our analysis demonstrated a high correlation among decreased levels of GSH content and an increase in lipid peroxidation and DNA damage. This finding establishes an interrelationship between pro-oxidant and genotoxic effects. In addition, DPDS was not genotoxic and did not increase lipid peroxidation levels in any organs at doses < 50 micromol/kg. Finally, pre-treatment with N-acetyl-cysteine completely prevented DPDS-induced oxidative damage by the maintenance of cellular GSH levels, reinforcing the positive relationship of DPDS-induced GSH depletion and DNA damage. In summary, DPDS induces systemic genotoxicity in mammals as it causes DNA damage in vital organs like brain, liver, kidney and testes.  相似文献   

6.
Glyphosate is a controversial herbicide. Its genotoxicity and presence in various ecosystems have been reported. The use of ascorbic acid and resveratrol could protect different organisms from glyphosate-induced genetic damage. In the present study, specific genetic damage induced by glyphosate was evaluated in erythrocytes of Oreochromis niloticus, Ambystoma mexicanum and human lymphocytes. Simultaneously, the antigenotoxic capacity of various concentrations of ascorbic acid and resveratrol was evaluated by means of pretreatment and simultaneous treatment protocols. The 0.03, 0.05 and 0.07 mM concentrations of glyphosate induced significant genotoxic activity (p < 0.05) in human lymphocytes and in erythrocytes of the species studied, and could cause genomic instability in these populations. The reduction in genetic damage observed in human lymphocytes exposed to high concentrations of glyphosate is only apparent: excessive genetic damage was associated with undetectable excessive tail migration length. A significant (p < 0.05) antigenotoxic effect of ascorbic acid and resveratrol was observed in all concentrations, organisms and protocols used. Both ascorbic acid and resveratrol play an important role in maintaining the integrity of DNA. Ascorbic acid in Oreochromis niloticus, Ambystoma mexicanum reduced glyphosate-induced genetic damage to a basal level. Therefore, our data indicate that these antioxidants could help preserve the integrity of the DNA of organisms exposed to glyphosate. The consumption of antioxidants is a useful tool against the genotoxicity of glyphosate.  相似文献   

7.
In Japan, ortho-phenylphenol (OPP), biphenyl (BP), and thiabendazole (2-(4'-thiazolyl)benzimidazole, TBZ) are commonly used as a postharvest treatment to preserve imported citrus fruits during transport and storage. We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of those agents in mouse stomach, liver, kidney, bladder, lung, brain, and bone marrow. CD-1 male mice were sacrificed 3, 8, and 24 h after oral administration of the test compounds. OPP (2000 mg/kg) induced DNA damage in the stomach, liver, kidney, bladder, and lung, BP (2000 mg/kg) and TBZ (200 mg/kg) induced DNA damage in all the organs studied. For OPP, increased DNA damage peaked at 3–8 h and tended to decrease at 24 h. For BP, on the contrary, increased DNA migration peaked at 24 h. That delay may have been due to the fact that OPP is metabolized by cytochrome 450 and prostaglandin H synthase to phenylbenzoquinone (PBQ), a DNA binding metabolite, and BP is metabolized to PBQ via OPP and m-phenylphenol. The positive response to TBZ, an aneugen, supports the in vivo DNA-damaging action of TBZ.  相似文献   

8.
An intrahepatic host-mediated mutagenicity assay capable of detecting low levels of N-nitrosomorpholine (NMOR) is described. The indicator organism was Salmonella typhimurium TA1530 which had been injected intravenously 10 min prior to the administration of the test compound. The bacteria were subsequently recovered from the liver and scored for revertants by standard methods. The lower limit of detectibility of this system for intubated NMOR was 0.2 microgram/g body weight. This assay was then used to study the formation of NMOR in vivo from morpholine and nitrite which had been sequentially gavaged to mice. Under acidic conditions (pH 3.4) 12--19% of the administered morpholine was converted to NMOR in the presence of excess nitrite. This nitrosation, and the subsequent uptake and activation of the NMOR, took place so rapidly that most of the total mutagenic response was complete within 15 min. This response was inhibited by prior intubation of ascorbic acid, a known inhibitor of nitrosation, and enhanced by sodium thiocyanate, a nitrosation catalyst.  相似文献   

9.
Syrian hamsters in the 11th or 12th day of pregnancy were given sodium nitrite and morpholine simultaneously by stomach tube. The embryonic cells were cultured for 72 h in normal MEM medium plus 10% fetal calf serum and then transferred into medium containing 8-azaguanine. After cultivation in the selection medium, number of 8 azaguanine-resistant colonies was scored. As the results, this oral concurrent transplacental application of sodium nitrite and morpholine can cause 8 azaguanine-resistant mutants on the cultured embryonic cells from mothers that received these chemicals. Nitrosomorpholine was only detected in stomach of animals treated with sodium nitrite and morpholine.  相似文献   

10.
Numerous factors may influence the incidence of diabetes in the population. The production of reactive oxygen species (ROS) is elevated in diabetes patients. Based on the reported involvement of reactive species and nitrate/nitrite in diabetes, this present study has examined in the alkaline Comet assay, the effect of different levels of NaNO(2) in the presence of the oxygen radical generating agent, hydrogen peroxide (H(2)O(2)). Peripheral lymphocytes from diabetic and non-diabetic Caucasians and Asians of both sexes were studied in vitro. Endogenous factors (e.g., sex, age, body mass index-BMI) and exogenous factors (lifestyle factors e.g., smoking and drinking habits, diet) were taken into account. A preliminary study in two individuals showed that DNA damage remained constant over a wide dose range of NaNO(2) (1-75mM), but when H(2)O(2) was added at a constant concentration of 50microM per dose of NaNO(2), there was an increase in DNA damage corresponding with the varying levels of NaNO(2) investigated. This was also seen with the 44 individuals (non-diabetic, n=24; type 1 diabetic, n=11; type 2 diabetic, n=9) investigated. NaNO(2) was capable of inducing a significant level of DNA damage in lymphocytes (p<0.001), but only with the addition of H(2)O(2). When levels of DNA damage were analysed in terms of the different variables there were few significant differences in damage between diabetic and non-diabetic subjects, or other sub-population groups, and no statistically significant differences in susceptibility were observed between subject covariates using regression techniques.  相似文献   

11.
Organophosphorous (OP) compounds are the most commonly used pesticides. There are several published reports on the direct toxicity of OP pesticides, but few data on the toxicity of their metabolites. To determine if diethylthiophosphate (DETP) and diethyldithiophosphate (DEDTP), two of the major OP metabolites, demonstrate genotoxicity, and to elucidate the possible genotoxic mechanisms, we treated WRL68, HepG2, HeLa and human blood cells with different concentrations of DETP and DEDTP. We evaluated the possible contribution of oxidative stress generation and P450 enzymes to the genotoxicity of the OP metabolites, as determined using the comet assay. Our results showed that both OP metabolites (DETP and DEDTP) induce DNA damage only in the hepatic cell lines, and this effect could be related to a secondary non-diffusible metabolite generated by the activity of P450 enzymes since P450 enzyme inhibitors also inhibited the induction of DNA damage in hepatic cells. These secondary metabolites should be taken into account when assessing risk to human populations exposed to OP pesticides.  相似文献   

12.
We determined the genotoxicity of 39 chemicals currently in use as food additives. They fell into six categories-dyes, color fixatives and preservatives, preservatives, antioxidants, fungicides, and sweeteners. We tested groups of four male ddY mice once orally with each additive at up to 0.5xLD(50) or the limit dose (2000mg/kg) and performed the comet assay on the glandular stomach, colon, liver, kidney, urinary bladder, lung, brain, and bone marrow 3 and 24h after treatment. Of all the additives, dyes were the most genotoxic. Amaranth, Allura Red, New Coccine, Tartrazine, Erythrosine, Phloxine, and Rose Bengal induced dose-related DNA damage in the glandular stomach, colon, and/or urinary bladder. All seven dyes induced DNA damage in the gastrointestinal organs at a low dose (10 or 100mg/kg). Among them, Amaranth, Allura Red, New Coccine, and Tartrazine induced DNA damage in the colon at close to the acceptable daily intakes (ADIs). Two antioxidants (butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT)), three fungicides (biphenyl, sodium o-phenylphenol, and thiabendazole), and four sweeteners (sodium cyclamate, saccharin, sodium saccharin, and sucralose) also induced DNA damage in gastrointestinal organs. Based on these results, we believe that more extensive assessment of food additives in current use is warranted.  相似文献   

13.
Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid   总被引:3,自引:0,他引:3  
5-Aminolevulinic acid (ALA) is a heme precursor accumulated in plasma and in organs in acute intermittent porphyria (AIP), a disease associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma (HCC). Liver biopsies of AIP patients showed odd-shaped mitochondria and autophagic vacuoles containing well-preserved mitochondria. ALA yields reactive oxygen species upon metal-catalyzed oxidation and causes in vivo and in vitro impairment of rat liver mitochondria and DNA damage. Using a quantitative polymerase chain reaction assay, we demonstrated that ALA induces a dose-dependent damage in nuclear and mitochondrial DNA in human SVNF fibroblasts and rat PC12 cells. CHO cells treated with ALA also show nuclear DNA damage and human HepG2 cells entered in apoptosis and necrosis induced by ALA and its dimerization product, DHPY. The present data provide additional information on the genotoxicity of ALA, reinforcing the hypothesis that it may be involved in the development of HCC in AIP patients.  相似文献   

14.
The widespread use of sodium nitrite (NaNO2) for various industrial purposes has increased human exposure to alarmingly high levels of nitrate/nitrite. Because NaNO 2 is a strong oxidizing agent, induction of oxidative stress is one of the mechanisms by which it can exert toxicity in humans and animals. We have investigated the possible protection offered by carnosine (CAR) and N-acetylcysteine (NAC) against NaNO 2-induced nephrotoxicity in rats. Animals orally received CAR at 100 mg/kg body weight/d for seven days or NAC at 100 mg/kg body weight/d for five days followed by a single oral dose of NaNO 2 at 60 mg/kg body weight. The rats were killed after 24 hours, and the kidneys were removed and processed for various analyses. NaNO 2 induced oxidative stress in kidneys, as shown by the decreased activities of antioxidant defense, brush border membrane, and metabolic enzymes. DNA-protein crosslinking and DNA fragmentation were also observed. CAR/NAC pretreatment significantly protected the kidney against these biochemical alterations. Histological studies supported these findings, showing kidney damage in NaNO 2-treated animals and reduced tissue impairment in the combination groups. The protection offered by CAR and NAC against NaNO 2-induced damage, and their nontoxic nature, makes them potential therapeutic agents against nitrite-induced nephrotoxicity.  相似文献   

15.
IN experimental conditions, nitrite can interact with secondary amines in the rodent stomach at mildly acid pH to form nitrosamines1–4, a large number of which are potent carcinogens5. As tertiary amines also react in this way6, we have examined the analgesic aminopyrine, 4-dimethylaminoantipyrine (pyramidon), as being representative of many commonly used tertiary amine drugs.  相似文献   

16.
The effect of post-treatment with diphenyl diselenide on liver damage induced by 2-nitropropane (2-NP) was examined in male rats. Rats were pre-treated with a single dose of 2-NP (100 mg/kg body weight dissolved in canola oil). Afterward, the animals were post-treated with a dose of diphenyl diselenide (10, 50 or 100 micromol/kg). The parameters that indicate tissue damage such as liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), urea and creatinine were determined. Since the liver damage induced by 2-NP is related to oxidative damage, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT) and ascorbic acid level were also evaluated. Diphenyl diselenide (50 and 100 micromol/kg) effectively restored the increase of ALT and AST activities and urea level when compared to the 2-NP group. At the higher dose, diphenyl diselenide decreased GGT activity. Treatment with diphenyl diselenide, at all doses, effectively ameliorated the increase of hepatic and renal lipid peroxidation when compared to 2-NP group. 2-NP reduced CAT activity and neither alter SOD activity nor ascorbic acid level. This study points out the involvement of CAT activity in 2-NP-induced acute liver damage and suggests that the post-treatment with diphenyl diselenide was effective in restoring the hepatic damage induced by 2-NP.  相似文献   

17.
The effects of one-time ethanol intoxication on ascorbic acid and lipid metabolism and on drug-metabolizing enzymes in liver of rats were investigated. Male Donryu rats that had been fed semi-purified feed were given 5 g/kg ethanol solution (25%, w/v) via a stomach tube and killed 16 h after intubation. The amount of ascorbic acid excreted in the urine after ethanol administration increased, but renal and adrenal concentrations of ascorbic acid decreased. The serum levels of total cholesterol, high-density-lipoprotein cholesterol, triglycerides, phospholipids, and non-esterified fatty acids were elevated in rats given ethanol, but hepatic level of total lipids, cholesterol, triglycerides, phospholipids were not. The hepatic concentrations of cytochrome P-450 and cytochrome b5 did not increase, but this large dose of ethanol increased the activities of aminopyrine N-demethylase and cytochrome c reductase.

These results indicated that the single dose of ethanol affected the ascorbic acid and lipid metabolism of rats, and induced drug-metabolizing enzymes in their liver.  相似文献   

18.
Cypermethrin is the most widely used Type II pyrethroid pesticide because of its high effectiveness against target species and its low mammalian toxicity reported so far. It is a fast-acting neurotoxin and is known to cause free radical-mediated tissue damage. The present study investigates the genotoxic effects of cypermethrin in multiple organs (brain, kidney, liver, spleen) and tissues (bone marrow, lymphocytes) of the mouse, using the alkaline comet assay. Male Swiss albino mice were given 12.5, 25, 50, 100, 200 mg/kg BW of cypermethrin intraperitoneally, daily for 5 consecutive days. A statistically significant (p<0.05) dose-dependent increase in DNA damage was observed in all the organs assessed, as evident from the comet-assay parameters, viz., Olive tail moment (OTM; arbitrary unit), tail DNA (%) and tail length (microm). Brain showed maximum DNA damage followed by spleen>kidney>bone marrow>liver>lymphocytes, as evident by the OTM. Our data demonstrate that cypermethrin induces systemic genotoxicity in mammals as it causes DNA damage in vital organs like brain, liver, kidney, apart from that in the hematopoietic system.  相似文献   

19.
《Mutation Research Letters》1993,301(4):275-279
Further to a previous genotoxicity study, we analyzed sister-chromatid exchange (SCE) and DNA-repair induction (V79 and EUE cells in vitro) and DNA damage (rat liver in vivo) with regard to N-acryloyl-N-phenylpiperazine (AcrNPP), a chemical proposed for biomaterial polymerization which contains an aromatic tertiary amino function in a piperazine cycle. This chemical induced SCEs in a dose-dependent fashion (up to ≈ 3.7 times the control value), while it was negative for DNA-repair induction and weakly yeat significantly positive for in vivo DNA damage (maximum increase ≈ 1.4 times the control value). Taken together with our previous genotoxicity data on AcrNPP and structurally related compounds, the present results confirm that aneuploidy is a possible major effect of aromatic tertiary amines. As regards exposure to aneugenic agents, considerations on cancer risk evaluation are presented.  相似文献   

20.
Salivary nitrite is suggested to enhance the antimicrobial properties of gastric juice by conversion to nitric oxide (NO) and other reactive nitrogen intermediates in the stomach. Intubated patients exhibit extremely low gastric levels of NO, because they do not swallow their saliva. The present investigation was designed to examine the antibacterial effects of human saliva and gastric juice. Furthermore, we studied a new mode of NO delivery, involving formation from acidified nitrite, which could prevent bacterial growth in the gastric juice of intubated patients in intensive care units. The growth of Escherichia coli ATCC 25922 and the formation of NO and nitroso/nitrosyl species were determined after incubation of gastric juice with saliva from healthy volunteers that was rich (nitrate ingestion) or poor (overnight fasting) in nitrite. In a stomach model containing gastric juice from intubated patients, we inserted a catheter with a silicone retention cuff filled with ascorbic acid and nitrite and determined the resulting antibacterial effects on E. coli and Candida albicans. Saliva enhanced the bactericidal effect of gastric juice, especially saliva rich in nitrite. Formation of NO and nitroso/nitrosyl species by nitrite-rich saliva was 10-fold greater than that by saliva poor in nitrite. In our stomach model, E. coli and C. albicans were killed after exposure to ascorbic acid and nitrite. In conclusion, saliva rich in nitrite enhances the bactericidal effects of gastric juice, possibly through the generation of reactive nitrogen intermediates, including NO. Acidified nitrite inside a gas-permeable retention cuff may be useful for restoring gastric NO levels and host defense in critically ill patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号