首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a batch of barley associated with field cases of mycotoxic porcine nephropathy and containing ochratoxin A and citrinin, the mycoflora were isolated by parallel incubation at 10 and 25 degrees C. Subsequently, the isolated cultures were checked for production of nephrotoxins (xanthomegnin, viomellein, ochratoxin, and citrinin). The nephrotoxin producers, all isolated by incubation at 10 degrees C, were comprised of one culture of Penicillium viridicatum, five cultures of Penicillium cyclopium, and one culture of Penicillium crustosum, all producing xanthomegnin and viomellein. One culture of P. cyclopium produced citrinin. Viomellein was detected in the barley at a concentration of approximately 1 mg/kg. The method of analysis for xanthomegnin and viomellein included extraction with chloroform, partitioning in hexane-acetone, and thin-layer chromatographic separation and identification. The identity of the xanthomegnin and viomellein produced by the isolated fungi and of viomellein detected in the barley was supported by infrared spectroscopy. This is the first report of viomellein as a natural contaminant of foodstuffs.  相似文献   

2.
Ochratoxin A producing strains of Penicillium were isolated from two out of 18 cereal samples known to be positive for this mycotoxin. These isolates were identified as Penicillium verrucosum and all also produced citrinin. However, the storage fungi isolated most frequently in the study were those of the complex Penicillium aurantiogriseum group, most strains of which produced xanthomegnin, viomellein and vioxanthin in liquid and solid culture. Potential for the simultaneous occurrence of five nephrotoxic mycotoxins in poorly stored grain in the UK has therefore been shown. The less sensitive analytical method for xanthomegnin, viomellein and vioxanthin may result in under-estimation of their occurrence in practice in comparison to that for ochratoxin A and critinin.  相似文献   

3.
Fungal isolates from legumes were cultured on rice and examined for production of the toxic mold metabolites xanthomegnin and viomellein. Six of 14 Aspergillus ochraceus isolates produced from 0.3 to 1.3 mg of xanthomegnin per g and 0.1 to 1.0 mg of viomellein per g. One of nine isolates of Penicillium cyclopium produced 0.1 mg of xanthomegnin per g and 0.06 mg of viomellein per g. Three of nine P. viridicatum isolates produced from 0.4 to 1.6 mg of xanthomegnin per g and 0.2 to 0.4 mg of viomellein per g. This is the first report of xanthomegnin and viomellein production by A. ochraeus and P. cyclopium.  相似文献   

4.
A medium, pentachloronitrobenzene-rose bengal-yeast extract-sucrose agar (PRYES), for the isolation of moulds occurring during storage of cereals has been developed and compared with other selective media. The basal medium is yeast extract agar containing 15% sucrose (w/v). In addition to the sucrose content further selective measures include the addition of antibacterial antibiotics chloramphenicol and chlortetracycline (50 mg/l), the fungicides rose bengal (25 mg/l each), and pentachloronitrobenzene (1 g/l) and a low incubation temperature (20 degrees C). Members of the Mucorales were completely inhibited, and fast-growing species of other moulds were slightly inhibited, allowing important storage moulds to develop. The important ochratoxin A and citrinin-producing Penicillium viridicatum group II was indicated by a typical violet brown reverse on PRYES. Producers of xanthomegnin and viomellein (P. viridicatum group I and P. aurantiogriseum) were indicated on PRYES by their yellow reverse and obverse colours. The medium was used for screening 40 samples of barley, and moulds with the characteristic colours were all identified as the species mentioned above.  相似文献   

5.
Moistened barley was inoculated with 1.4 x 10(3) and 1.4 x 10(5) spores, respectively, from ochratoxin A-producing strains of Aspergillus ochraceus and Penicillium varidicatum. To estimate fungal tissue in the barley, the amount of glucosamine was followed for 28 days at 10 and 25 degrees C. Ochratoxin A was also followed during the same period and under the same conditions. The data show that ochratoxin A could be detected 4 to 6 days after inoculation at 25 degrees C, and the maximal accumulation of ochratoxin A was observed 28 days after inoculation. After 28 days at 25 degrees C, the quantities of ochratoxin A were between 7 and 46 micrograms/g of grain. At 10 degrees C only P. viridicatum produced ochratoxin A. The results indicated that production of ochratoxin A is not associated with rapid increase of glucosamine in the barley.  相似文献   

6.
A simple screening method for molds producing the intracellular mycotoxins brevianamide A, citreoviridin, cyclopiazonic acid, luteoskyrin, penitrem A, roquefortine C, sterigmatocystin, verruculogen, viomellein, and xanthomegnin was developed. After removing an agar plug from the mold culture, the mycelium on the plug is wetted with a drop of methanol-chloroform (1:2). By this treatment the intracellular mycotoxins are extracted within seconds and transferred directly to a thin-layer chromatography plate by immediately placing the plug on the plate while the mycelium is still wet. After removal of the plug, known thin-layer chromatographic procedures are carried out. The substrate (Czapek yeast autolysate agar) and growth conditions (25 degrees C for 7 days) used by Penicillium taxonomists proved suitable for the production of the mycotoxins investigated when 60 known toxigenic isolates and 865 cultures isolated from foods and feedstuffs were tested with this screening method.  相似文献   

7.
A medium, pentachloronitrobenzene-rose bengal-yeast extract-sucrose agar (PRYES), for the isolation of moulds occurring during storage of cereals has been developed and compared with other selective media. The basal medium is yeast extract agar containing 15% sucrose (w/v). In addition to the sucrose content further selective measures include the addition of antibacterial antibiotics chloram-phenicol and chlortetracycline (50 mg/l), the fungicides rose bengal (25 mg/l each), and pentachloronitrobenzene (1 g/l) and a low incubation temperature (20°C). Members of the Mucorales were completely inhibited, and fast-growing species of other moulds were slightly inhibited, allowing important storage moulds to develop. The important ochratoxin A and citrinin-producing Penicillium viridicatum group II was indicated by a typical violet brown reverse on PRYES. Producers of xanthomegnin and viomellein (P. viridicatum group I and P. aurantiogriseum ) were indicated on PRYES by their yellow reverse and obverse colours. The medium was used for screening 40 samples of barley, and moulds with the characteristic colours were all identified as the species mentioned above.  相似文献   

8.
AIMS: To assay sago starch from Papua New Guinea (PNG) for important mycotoxins and to test fungal isolates from sago for mycotoxin production in culture. METHODS AND RESULTS: Sago starch collected from Western and East Sepik Provinces was assayed for aflatoxins, ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin and zearalenone and all 51 samples were negative. Frequently isolated species of Penicillium (13), Aspergillus (five) and Fusarium (one) were cultured on wheat grain, and tested for the production of ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin, patulin and penicillic acid. All 12 isolates of P. citrinin and one of two A. flavipes isolates produced citrinin. A single isolate of A. versicolor produced sterigmatocystin. No other mycotoxins were detected in these cultures. CONCLUSIONS: No evidence was found of systemic mycotoxin contamination of sago starch. However, the isolation of several mycotoxigenic fungi shows the potential for citrinin and other mycotoxins to be produced in sago stored under special conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Sago starch is the staple carbohydrate in lowland PNG and the absence of mycotoxins in freshly prepared sago starch is a positive finding. However, the frequent isolation of citrinin-producing fungi indicates a potential health risk for sago consumers, and food safety is dependant on promoting good storage practices.  相似文献   

9.
Citrinin is one of the mycotoxins produced by Penicillium citrinum. We examined the decomposition products after heating citrinin in water at 140 degrees C and isolated a major product, citrinin H2 (3-(3,5-dihydroxy-2-methylphenyl)-2-formyloxy-butane). Citrinin H2 did not show significant cytotoxicity to HeLa cells up to a concentration of 200 microg/ml (% cytotoxicity: 39%) in 63 h of incubation, but citrinin showed severe toxicity at a concentration of 25 microg/ml (% cytotoxicity: 73%). HPLC analysis of citrinin after heating under various conditions indicates that citrinin H2 is mainly yielded from citrinin.  相似文献   

10.
Four of the metabolites of Penicillium viridicatum 66-68-2 grown on rice cultures were isolated and identified as xanthomegnin, viomellein, rubrosulphin, and viopurpurin. Melting points, elemental analysis, and infrared, ultraviolet, and field desorption and electron impact mass spectra of the isolated compounds were consistent with values reported in the literature for these compounds. In addition, diacetate and triacetate derivatives were prepared, and the chemical and physical analyses of the derivatives were also consistent with literature data. Proton magnetic resonance spectroscopy and thin-layer chromatography were also used for the additional identification of selected compounds.  相似文献   

11.
Aims: To assess the ability of fungi isolated from grapes to produce patulin and citrinin. Methods and Results: A total of 446 Aspergillus isolates belonging to 20 species and 101 Penicillium isolates were inoculated in Czapek yeast extract agar and yeast extract sucrose agar and incubated for 7 days at 25°C. Extracts were analysed for patulin and citrinin by thin‐layer chromatography. None of the isolates of Aspergillus spp. produced either patulin or citrinin. Patulin was produced by three isolates of Penicillium expansum and two of Penicillium griseofulvum. Citrinin was produced by five isolates of P. expansum, two of Penicillium citrinum and one of Penicillium verrucosum. Conclusions: Our results show that the Aspergillus and Penicillium species commonly isolated from grapes are not a source of the mycotoxins, patulin and citrinin. Significance and Impact of the Study: The possibility of co‐occurrence of patulin and citrinin with ochratoxin A in grapes and grape products remain low, owing to the low frequency of isolation of potentially producing species.  相似文献   

12.
By using thin-layer chromatography and infrared spectroscopy, xanthomegnin and viomellein have been isolated and identified from species of the Aspergillus ochraceus group. A correlation was established between the occurrence of these fungal quinones in the fungal cultural products and the ability of these products to induce mycotoxicosis in mice. In addition, a method was employed to estimate the amount of xanthomegnin and viomellein produced by the fungi.  相似文献   

13.
Twenty known penicillic acid (PA)-producing Aspergillus and Penicillium cultures were grown under various conditions in shaken flasks to determine the highest yielding strains and their requirements for maximum toxin production. Abilities of the cultures to utilize eight different carbon sources in Raulin-Thom medium for mycotoxin synthesis were determined at four different incubation temperatures: 15, 20, 25, and 28 degrees C. Of the 20 cultures, P. cyclopium NRRL 1888 was superior, yielding up to 4 mg of PG per ml, with mannitol as the carbon source and 25 degrees C as the incubation temperature. Fifteen of the cultures elaborated lesser amounts of PA, whereas four strains yielded none under the test conditions. Whey from the manufacture of cottage cheese by the cultured process was also a satisfactory medium for PA production. In whey medium, yields up to 3 mg/ml were obtained with P. cyclopium NRRL 1888.  相似文献   

14.
Twenty known penicillic acid (PA)-producing Aspergillus and Penicillium cultures were grown under various conditions in shaken flasks to determine the highest yielding strains and their requirements for maximum toxin production. Abilities of the cultures to utilize eight different carbon sources in Raulin-Thom medium for mycotoxin synthesis were determined at four different incubation temperatures: 15, 20, 25, and 28 degrees C. Of the 20 cultures, P. cyclopium NRRL 1888 was superior, yielding up to 4 mg of PG per ml, with mannitol as the carbon source and 25 degrees C as the incubation temperature. Fifteen of the cultures elaborated lesser amounts of PA, whereas four strains yielded none under the test conditions. Whey from the manufacture of cottage cheese by the cultured process was also a satisfactory medium for PA production. In whey medium, yields up to 3 mg/ml were obtained with P. cyclopium NRRL 1888.  相似文献   

15.
Strains of available terverticillate penicillium species and varieties were analyzed for profiles of known mycotoxins and other secondary metabolites produced on Czapek yeast autolysate agar (intracellular metabolites) and yeast extract-sucrose agar (extracellular metabolites) by using simple thin-layer chromatography screening techniques. These strains (2,473 in all) could be classified into 29 groups based on profiles of secondary metabolites. Most of these profiles of secondary metabolites were distinct, containing several biosynthetically different mycotoxins and unknown metabolites characterized by distinct colors and retardation factors on thin-layer chromatography plates. Some species (P. italicum and P. atramentosum) only produced one or two metabolites by the simple screening methods. The 29 groups based on profiles of secondary metabolites were known species or subgroups thereof. These species and subgroups were independently identifiable by using morphological and physiological criteria. The species accepted, the number of isolates in each species investigated, and the mycotoxins they produced were: P. atramentosum, 4; P. aurantiogriseum, 510 (group I: penicillic acid and S-toxin and group II: penicillic acid, penitrem A [low frequency], terrestric acid [low frequency], viomellein, and xanthomegnin); P. brevicompactum, 81 (brevianamid A and mycophenolic acid); P. camembertii group I, 38, and group II, 114 (cyclopiazonic acid); P. chrysogenum, 87 (penicillin, roquefortine C, and PR-toxin); P. claviforme, 4 (patulin and roquefortine C); P. clavigerum, 4 (penitrem A); P. concentricum group I, 10 (griseofulvin and roquefortine C), and group II, 3 (patulin and roquefortine C); P. crustosum, 123 (penitrem A, roquefortine C, and terrestric acid); P. echinulatum, 13; P. expansum, 91 (citrinin, patulin, and roquefortine C); P. granulatum, 6 (patulin, penitrem A, and roquefortine C [traces]); P. griseofulvum, 21 (cyclopiazonic acid, griseofulvin, patulin, and roquefortine C); P. hirsutum, 100 (group I: terrestric acid; group II: citrinin, penicillic acid , roquefortine C, and terrestric acid; and group III: roquefortine C and terrestric acid), P. hirsutum group IV, 2 (chaetoglobosin C); P. isariiforme, 1; P. italicum, 41; P. mali, 104; P. roquefortii, 78 (group I: mycophenolic acid, PR-toxin, and roquefortine C and group II: mycophenolic acid, patulin, penicillic acid [low frequency], and roquefortine C); P. viridicatum group I, 634 (brevianamid A [low frequency], penicillic acid, viomellein, and xanthomegnin), P. viridicatum group II and III, 494 (citrinin and ochratoxin A), P. viridicatum group IV, 12 (griseofulvin and viridicatumtoxin). It is proposed that profiles of secondary metabolites be strongly emphasized in any future revision of the penicillia.  相似文献   

16.
The embryotoxic potential of ochratoxin A and citrinin was studied after administering, either subgerminally or intraamniotically, single mounting doses of the mycotoxins to chicken embryos on days 2, 3, and 4. The beginning of the embryotoxicity dose range was found to be between 0.01 to 0.05 microgram for ochratoxin A and 1 to 10 micrograms for citrinin. The maximum response to both mycotoxins occurred after administration on day 3. In addition to significant growth retardation of fetuses, exencephaly, microphthalmia, cleft beak, reduction deformities of the limbs, and abdominal wall and ventricular septal defects were encountered on day 8 of incubation. When 4 micrograms of citrinin was constantly added to ochratoxin A administered in the dose range of 0.03 to 0.5 microgram, a strictly additive effect was seen. It may be supposed that citrinin produced together with ochratoxin A in some strains of Penicillium viridicatum Westling does not potentiate the clear-cut embryotoxic action of the latter mycotoxin.  相似文献   

17.
The embryotoxic potential of ochratoxin A and citrinin was studied after administering, either subgerminally or intraamniotically, single mounting doses of the mycotoxins to chicken embryos on days 2, 3, and 4. The beginning of the embryotoxicity dose range was found to be between 0.01 to 0.05 microgram for ochratoxin A and 1 to 10 micrograms for citrinin. The maximum response to both mycotoxins occurred after administration on day 3. In addition to significant growth retardation of fetuses, exencephaly, microphthalmia, cleft beak, reduction deformities of the limbs, and abdominal wall and ventricular septal defects were encountered on day 8 of incubation. When 4 micrograms of citrinin was constantly added to ochratoxin A administered in the dose range of 0.03 to 0.5 microgram, a strictly additive effect was seen. It may be supposed that citrinin produced together with ochratoxin A in some strains of Penicillium viridicatum Westling does not potentiate the clear-cut embryotoxic action of the latter mycotoxin.  相似文献   

18.
Sixteen strains of Penicillium roqueforti Thom, isolated from blue-molded cheeses, were studied. In vitro, all of these strains produced mycophenolic acid, some on the order of 0.8 to 4 mg/g od dry culture. The greatest yields were obtained after 10 days of incubation of cultures at 15 degrees C. However, under some experimental conditions, mycophenolic acid was not alone responsible for the toxicity of culture extracts to chicken embryos.  相似文献   

19.
Groups I and II of Penicillium viridicatum were further differentiated on the basis of synthesis of two mycotoxins, xanthomegnin and viomellein. Strains previously classified as group II produced these pigments, whereas those in group I did not. These napthoquinone pigments were quantitated by thin-layer chromatography and high-pressure liquid chromatography. A new mobile phase of toluene and acetic acid effected a baseline separation of the two components. It is proposed that such biochemical distinctions be incorporated into an artificial taxonomic scheme of use to nontaxonomists.  相似文献   

20.
The taxonomy of the asymmetric (predominantly terverticillate) penicillia is based on morphological differences that leave identification difficult. The application of physiological criteria facilitated the identification of the common asymmetric penicillia investigated. Changes in the placement of some strains of these penicillia made the connection to mycotoxin-producing ability clearer. The classical criterion of conidium color was deemphasized and replaced by the following criteria: (i) growth on nitrite-sucrose agar and (ii) growth and acid (and subsequent base) production on creatine-sucrose agar (containing bromocresol purple). Other criteria used or developed were: (iii) growth on sorbic acid plus benzoic acid agar (50 + 50 ppm, pH 3.8), (iv) growth on an agar containing 1,000 ppm propionic acid (pH 3.8), (v) growth on an agar containing 0.5% acetic acid, (vi) growth at 37 degrees C, (vii) growth rate on an agar containing 0.1% pentachloronitrobenzene, (viii) production of extracellular tricaproinase, and (ix) fasciculation on a medium containing 10 ppm botran (2,6-dichloro-4-nitroanilin). The pattern of extracellular metabolites after thin-layer chromatography was used as a chemotaxonomic criterion. The species investigated, the number of isolates investigated, and the toxins which some of these isolates produce were: Penicillium roqueforti (18) (patulin), P. citrinum (11) (citrinin), P. patulum (9) (patulin and griseofulvin), P. expansum (patulin and citrinin), P. hirsutum (13), P. brevicompactum (19), and P. chrysogenum (12). Widespread species of the P. cyclopium, P. viridicatum, and P. expansum series of Raper and Thom (A Manual of the Penicillia, 1949) were subdivided into four new groups: "P. crustosum pA" (29) (penitrem A), "P. melanochlorum" (29), "P. cyclopium p" (119) (penicillic acid and infrequently penitrem A), and "P. viridicatum o-c" (43) (ochratoxin A and citrinin). "P. viridicatum o-c" was separated from "P. cyclopium p" due to its ability to grow on nitrite as sole nitrogen source. The species and groups investigated were related to the new taxonomic classification of the genus Penicillium according to Pitt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号