首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
Chromosomal rearrangements associated with one Ty1 element in the iso-1-cytochrome c (CYC1) region of Saccharomyces cerevisiae yeast cells were examined. Most of the rearrangements were deletions of the three linked genes, CYC1, OSM1, and RAD7, and resulted from recombination involving the single Ty1 element and a solo delta in the same orientation. These deletions differed by the number of Ty1 elements (zero, one, or two) remaining after deletion and by restriction site heterogeneities associated with these elements. A single Ty1 element remained at the deletion junction point much more frequently than no Ty1. Apparently the Ty1-associated delta element nearer to the solo delta was involved more often in recombination than the more distal Ty1-associated delta element. The restriction site data implicate gene conversion and suggest that site-specific recombination within the deltas, if occurring, is not the only mechanism of delta-delta recombination. Three other rearrangements bore deletions which began at the end of the Ty1 element and extended into regions not bearing Ty1 or delta sequences. Two of these deletions eliminated 7 kilobases of DNA, although they differed by an associated reciprocal translocation. The third involved a deletion of 14.7 kilobases of DNA associated with an overlapping inversion.  相似文献   

3.
4.
The yeast Saccharomyces cerevisiae has about 30 to 50 copies of a transposable element Ty. Most of these elements are located at the 5' ends of protein coding sequences and are flanked by a 5 bp duplication. We report below an insertion of a Ty element into one of the repeated ribosomal RNA (rRNA) genes of yeast. The element is located between the 3' ends of the divergentally transcribed 37S and 5S rRNA's and is not flanked by a 5 bp duplication. In addition, one end of the Ty insertion is contiguous with a 306 bp deletion of the sequences of the rRNA gene. We find that this insertion, unlike most Ty insertions, is mitotically unstable.  相似文献   

5.
Plus-strand strong-stop DNA transfer in yeast Ty retrotransposons.   总被引:4,自引:0,他引:4       下载免费PDF全文
V Lauermann  J D Boeke 《The EMBO journal》1997,16(21):6603-6612
  相似文献   

6.
7.
8.
M. J. Curcio  D. J. Garfinkel 《Genetics》1994,136(4):1245-1259
Despite the abundance of Ty1 RNA in Saccharomyces cerevisiae, Ty1 retrotransposition is a rare event. To determine whether transpositional dormancy is the result of defective Ty1 elements, functional and defective alleles of the retrotransposon in the yeast genome were quantitated. Genomic Ty1 elements were isolated by gap repair-mediated recombination of pGTy1-H3(Δ475-3944)HIS3, a multicopy plasmid containing a GAL1/Ty1-H3 fusion element lacking most of the gag domain (TYA) and the protease (PR) and integrase (IN) domains. Of 39 independent gap repaired pGTyHIS3 elements isolated, 29 (74%) transposed at high levels following galactose induction. The presence of restriction site polymorphisms within the gap repaired region of the 29 functional pGTyHIS3 elements indicated that they were derived from at least eight different genomic Ty1 elements and one Ty2 element. Of the 10 defective pGTyHIS3 elements, one was a partial gap repair event while the other nine were derived from at least six different genomic Ty1 elements. These results suggest that most genomic Ty1 elements encode functional TYA, PR and IN proteins. To understand how functional Ty1 elements are regulated, we tested the hypothesis that a TYB protein associates preferentially in cis with the RNA template that encodes it, thereby promoting transposition of its own element. A genomic Ty1 mhis3AI element containing either an in-frame insertion in PR or a deletion in TYB transposed at the same rate as a wild-type Ty1mhis3AI allele, indicating that TYB proteins act efficiently in trans. This result suggests in principle that defective genomic Ty1 elements could encode trans-acting repressors of transposition; however, expression of only one of the nine defective pGTy1 isolates had a negative effect on genomic Ty1 mhis3AI element transposition in trans, and this effect was modest. Therefore, the few defective Ty1 elements in the genome are not responsible for transpositional dormancy.  相似文献   

9.
10.
11.
12.
Ty1 and delta elements occur adjacent to several tRNA genes in yeast   总被引:18,自引:2,他引:16       下载免费PDF全文
A Eigel  H Feldmann 《The EMBO journal》1982,1(10):1245-1250
A comparative analysis of a number of yeast DNA-pBR322 recombinant plasmids carrying repetitive sequence elements has revealed that Ty1 or delta elements occur in the vicinity of several tRNA genes. Four examples have been characterized in detail: three glutamate tRNA genes and a serine tRNA gene. The tRNAGlu3 genes occupy different chromosomal locations; two of these genes are found adjacent to Ty1 elements, and the third is found adjacent to an independent delta element. A delta unit is also found adjacent to a tRNASer2 gene. Next to one of the tRNAGlu3 genes, the delta element is joined to a truncated sigma element. Junctions between different delta units were characterized by the sequence analysis of two DNA segments that carry no tRNA genes.  相似文献   

13.
14.
Ty element transposition: reverse transcriptase and virus-like particles   总被引:65,自引:0,他引:65  
D J Garfinkel  J D Boeke  G R Fink 《Cell》1985,42(2):507-517
  相似文献   

15.
16.
17.
18.
19.
J. D. Boeke  D. J. Eichinger    G. Natsoulis 《Genetics》1991,129(4):1043-1052
Haploid yeast strains bearing approximately double the normal number of Ty1 elements have been constructed using marked GAL/Ty1 fusion plasmids. The strains maintain their high transposon copy number and overall genome structure in the absence of selection. The strains bearing extra Ty1 copies are surprisingly similar phenotypically to the parental strain. The results suggest that the limit to transposon copy number, if any, has not been reached. When these strains are crossed by wild-type strains (i.e., bearing the normal complement of Ty1 elements) or by strains of opposite mating type also bearing excess Ty1 elements, normal to very slightly reduced spore viability is observed, indicating that increasing the extent of transposon homology scattered around the genome does not result in significant increases in frequency of ectopic reciprocal recombination. The results suggest that yeast cells have evolved mechanisms for coping with excess transposon copies in the genome.  相似文献   

20.
Saccharomyces cerevisiae Ty elements are transposons closely related to retroviruses. The DNA sequence of a functional Ty element (TyH3) is presented. The long terminal repeat sequences are different, suggesting that TyH3 is a recombinant Ty element. A chromosomal Ty element near the LYS2 gene, Ty173, was found to be nonfunctional, even though it has no detectable insertions or deletions. The defect in Ty173 transposition is caused by a missense mutation giving rise to a Leu-to-Ile substitution in the TYB (pol) open reading frame. Several chromosomal Ty elements carry this lesion in their DNA, indicating that nonfunctional Ty elements are common in the yeast genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号